基于随机域名检测和主动防御的用户站安全防护
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Security Protection of User Station Based on Random Domain Name Detection and Active Defense
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电力监控系统是电力行业最重要的生产管理系统. 作为电力监控系统的重要组成部分, 缺少电网约束力的用户站将会成为网络攻击的重要目标. 为及时感知用户站侧网络攻击事件, 提出了一种结合用户站侧随机域名实时检测和主动防御的方法. 使用胶囊网络(CapsNet)结合长短期记忆网络(LSTM)对流量数据中提取的域名进行二分类, 当检测到随机域名时, 通过远程终端协议(Telnet)对路由器和交换机下发指令更新其安全策略或关闭路由器和交换机的业务接口以阻断网络攻击. 实验结果表明, 使用CapsNet结合LSTM分类算法在随机域名检测中准确率达到99.16%, 召回率达到98%, 通过Telnet协议可以联动路由器和交换机在不中断业务的情况下做出主动防御.

    Abstract:

    The power monitoring system is the most important production management system in the power industry. As an important part of the power monitoring system, the user station will become the main target of network attacks if it lacks grid binding. In order to perceive the network attack events on the subscriber station side in time, a method combining real-time detection and active defense of random domain names on the subscriber station side is proposed. A capsule network (CapsNet) combined with a long short-term memory (LSTM) network is used to classify the domain names extracted from the traffic data. When a random domain name is detected, instructions are sent to routers and switches to update their security policies or shut down the service interfaces of routers and switches to block network attacks through the remote terminal protocol (Telnet). The experimental results show that the use of the CapsNet combined with the LSTM classification algorithm can achieve an accuracy of 99.16% and a recall of 98% in random domain name detection. Through the Telnet, routers and switches can be linked to make active defense without interrupting services.

    参考文献
    相似文献
    引证文献
引用本文

任小康,向勇,李中伟,常星,常昱.基于随机域名检测和主动防御的用户站安全防护.计算机系统应用,2023,32(3):316-321

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-29
  • 最后修改日期:2022-09-07
  • 录用日期:
  • 在线发布日期: 2022-12-23
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号