基于机器学习XGBoost的机制砂细粉含量预测
作者:

Prediction of Fine Powder Content in Manufactured Sand Based on Machine Learning XGBoost
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    机制砂是由碎石或者砾石经制砂机反复破碎加工至粒径小于2.36 mm的人工砂. 在实验中把机制砂中的石粉含量和含泥量称为细粉含量, 细粉含量表征机制砂的洁净程度. 本文提出了一种基于XGBoost网络的机制砂细粉含量预测方法. 首先, 利用完全封闭的图像采集设备对机制砂细粉制成的溶液进行图像采集, 保证外界光线不会对图像拍照造成影响, 之后进行图片裁剪、读取RGB值、转LCH颜色空间等预处理, 然后构建XGBoost网络模型, 通过贝叶斯原理进行参数的循环迭代, 之后进行模型优化, 使模型的r2_score更高, 最终实现对机制砂细粉含量的预测. 结果表明: 该模型预测的数据的r2_score可以达到0.967 762, 相比于传统的多元线性回归模型、BP神经网络、传统XGBoost网络预测的r2_score0.896 1440.914 5980.950 670, 预测精度有明显提高. 在实际应用中, 该方法可以缩短机制砂细粉含量测量时间, 简化机制砂细粉含量测量步骤, 是一种新型的预测机制砂细粉含量的方法.

    Abstract:

    Manufactured sand refers to artificial sand whose particle size is less than 2.36 mm after the repeated crushing of gravels by sand-making machines. In experiments, stone powder and mud contents in the manufactured sand are called fine powder content, which represents the cleanliness of the manufactured sand. In this study, a method for predicting the fine powder content in the manufactured sand based on the XGBoost network is proposed. First, a completely closed image acquisition device is used to collect images of a solution made of fine powders in the manufactured sand, so as to guarantee that the outside light will not affect shooting. Then pre-treatment is carried out, such as picture cropping, RGB value reading, and LCH color space shifting, and an XGBoost network model is built. Through the Bayes principle, loop iteration of parameters is conducted, and the model is optimized, so as to make the r2_score of the model higher and finally predict the fine powder content in the manufactured sand. The results show that the r2_score of the data predicted by this model can reach 0.967 762. In addition, the r2_score predicted by the traditional multiple linear regression models, BP neural network, and traditional XGBoost network is 0.896 144, 0.914 598, and 0.950 670. In contrast, the prediction accuracy of the proposed model is significantly improved. In practical application, this method can shorten the measurement time and simplify the measurement steps of the fine powder content in the manufactured sand. Therefore, it is a new method for predicting the fine powder content in manufactured sand.

    参考文献
    [1] 盛余飞. 石粉含量对机制砂砂浆孔结构特性的影响研究. 四川建材, 2020, 46(5): 11–12. [doi: 10.3969/j.issn.1672-4011.2020.05.007
    [2] 胡胜荣. 细集料砂当量对沥青混合料路用性能的影响分析. 运输经理世界, 2021, (2): 131–132. [doi: 10.3969/j.issn.1673-3681.2021.02.065
    [3] 陆宇, 杜骋, 金光来, 等. 细集料砂当量对沥青混合料路用性能的影响研究. 山西建筑, 2021, 47(3): 101–102, 152. [doi: 10.3969/j.issn.1009-6825.2021.03.038
    [4] 马兴, 郭贵勇. 砂当量试验仪的校准方法及其结果分析与研究. 科技创新导报, 2020, 17(1): 52, 55. [doi: 10.16660/j.cnki.1674-098X.2020.01.052
    [5] 朱立无, 朱岩. 砂当量试验仪校准结果不确定度评定. 计量与测试技术, 2019, 46(5): 107–110. [doi: 10.15988/j.cnki.1004-6941.2019.5.034
    [6] 郭景宝, 马旭梁, 李大勇, 等. 一种快速检测原砂含泥量的自动装置. 铸造, 2019, 68(2): 181–185. [doi: 10.3969/j.issn.1001-4977.2019.02.015
    [7] 刘泽宇. 浊度法原砂含泥量检测方法及装置[硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2019.
    [8] 郭景宝. 原砂含泥量快速检测装置的研制[硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2019.
    [9] 马旭梁, 刘泽宇, 李大勇. 浊度法检测原砂含泥量. 哈尔滨理工大学学报, 2020, 25(6): 126–130. [doi: 10.15938/j.jhust.2020.06.018
    [10] 王风雅. 原砂含泥量的图像检测方法研究[硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2021.
    [11] Zhu X, Chu J, Wang KD, et al. Prediction of rockhead using a hybrid N-XGBoost machine learning framework. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(6): 1231–1245. [doi: 10.1016/j.jrmge.2021.06.012
    [12] Chelgani SC, Nasiri H, Alidokht M. Interpretable modeling of metallurgical responses for an industrial coal column flotation circuit by XGBoost and SHAP-A “conscious-lab” development. International Journal of Mining Science and Technology, 2021, 31(6): 1135–1144. [doi: 10.1016/j.ijmst.2021.10.006
    [13] Sheng S, Li R, Wang X, et al. Predicting the 7th day efficacy of acupoint application of Chinese herbs (Xiao Zhong Zhi Tong Tie) in patients with diarrhea—A machine-learning model based on XGBoost algorithm. World Journal of Traditional Chinese Medicine, 2022, 8(2): 257–261. [doi: 10.4103/wjtcm.WJTCM_60_21
    [14] 蒋妮, 程港, 贺思敏, 等. 基于决策树与多元线性回归模型的出生体重影响因素分析. 中国卫生统计, 2022, 39(2): 202–206
    [15] 高虹雷, 门昌骞, 王文剑. 多核贝叶斯优化的模型决策树算法. 国防科技大学学报, 2022, 44(3): 67–76. [doi: 10.11887/j.cn.202203009
    [16] Zhao SJ, Shan YL, Gultepe I. Prediction of visibility in the Arctic based on dynamic Bayesian network analysis. Acta Oceanologica Sinica, 2022, 41(4): 57–67. [doi: 10.1007/s13131-021-1826-z
    [17] 何军, 林广东, 申小军, 等. 基于贝叶斯优化XGBoost的隧道沉降量预测. 计算机系统应用, 2022, 31(7): 379–385. [doi: 10.3969/j.issn.1003-3254.2022.07.050
    [18] 杨灿, 刘磊磊, 张遗立, 等. 基于贝叶斯优化机器学习超参数的滑坡易发性评价. 地质科技通报, 2022, 41(2): 228–238
    [19] 孙斌, 储芳芳, 陈小惠. 基于贝叶斯优化XGBoost的无创血压预测方法. 电子测量技术, 2022, 45(7): 68–74. [doi: 10.19651/j.cnki.emt.2108646
    [20] 刘青, 鲁成, 马天祥, 等. 基于贝叶斯优化LightGBM算法的主动式搜索时间调整方法. 华北电力大学学报(自然科学版). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=HBDL20220716000&uniplatform=NZKPT&language=gb. [2022-07-19].
    引证文献
引用本文

李姝彤,李伟,高尧,杨明,丁健刚.基于机器学习XGBoost的机制砂细粉含量预测.计算机系统应用,2023,32(3):256-264

复制
分享
文章指标
  • 点击次数:732
  • 下载次数: 1640
  • HTML阅读次数: 1748
  • 引用次数: 0
历史
  • 收稿日期:2022-08-01
  • 最后修改日期:2022-09-01
  • 在线发布日期: 2022-11-18
文章二维码
您是第12826496位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号