摘要:针对具有约束性的复合分位数回归网络(monotone composite quantile regression neural network, MCQRNN)无法较好地分析负荷数据之中的时序信息和内在规律的问题, 本研究融合MCQRNN以及膨胀因果卷积网络(dilated causal convolutional networks, DCC), 提出了一种新的分位数回归模型MCQRDCC (monotone composite quantile regression dilated causal convolutional networks), 该模型将输入划分为分位点输入与非约束输入, 使该模型的输出随分位点的增大而增大, 以此解决分位数交叉的问题. 同时, 使用DCC的结构, 使该模型充分地分析负荷数据之中的序列信息, 使得预测结果更加符合真实负荷的变化趋势. 此外, MCQRNN使用指数函数对约束权重矩阵和隐藏层权重进行转化, 会影响反向传播时权重的调整, 本研究使用ReLU函数代替指数函数可以解决这个问题, 以此提高预测的精度. 使用真实的负荷数据进行实验, 实验结果表明, MCQRDCC能有效地提高预测精度, 相较于MCQRNN, 其平均Pinball损失和CWC分别下降2.11%和9.31%, AIS提升了10.51%.