基于异常的终端级入侵检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2021YFB3101300); 国家自然科学基金面上项目(61972089)


Anomaly-based Terminal-level Intrusion Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    入侵检测技术作为计算机防护的主要技术手段, 因具有适应性强、能识别新型攻击的优点而被广泛研究, 然而识别率和误报率难以保证是该技术的主要瓶颈. 为了提升异常检测技术的识别率并降低误报率, 提出了一种终端级入侵检测算法(terminal-level intrusion detection algorithm, TL-IDA). 在数据预处理阶段把终端日志切割成连续的小块命令序列, 并引入统计学的常用指标为命令序列构建特征向量, 再使用TL-IDA算法通过特征向量对用户建模. 在此基础上, 还提出了一种滑动窗口判别法, 用于判断系统是否遭受攻击, 从而提升入侵检测算法的性能. 实验结果表明, TL-IDA算法的平均识别率和误报率分别达到了83%和15%, 优于同类的基于异常技术的终端级入侵检测算法ADMIT、隐马尔可夫模型法等.

    Abstract:

    As the main technical means of computer protection, intrusion detection technology has been widely studied due to its advantages of strong adaptability and ability to identify new types of attacks. However, the recognition rate and false alarm rate are difficult to guarantee, which is the main bottleneck of this technology. To improve the recognition rate and reduce the false alarm rate of anomaly detection technology, this study proposes a terminal-level intrusion detection algorithm (TL-IDA). In the data preprocessing stage, the terminal log is cut into continuous and small-block command sequences, and common statistical indicators are introduced to construct feature vectors for the command sequences. Then TL-IDA is applied to model users through the feature vectors. On this basis, a sliding window discrimination method is also proposed to judge whether the system is under attack, so as to improve the performance of the intrusion detection algorithm. The experimental results show that the average recognition rate and false alarm rate of the TL-IDA are 83% and 15%, respectively, which are superior to those of similar terminal-level intrusion detection algorithms based on anomaly technology such as ADMIT and hidden Markov model.

    参考文献
    相似文献
    引证文献
引用本文

熊文定,罗凯伦,李睿.基于异常的终端级入侵检测.计算机系统应用,2023,32(2):181-189

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-12
  • 最后修改日期:2022-07-11
  • 录用日期:
  • 在线发布日期: 2022-09-01
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号