人身保险知识图谱的构建与应用
作者:
基金项目:

国家自然科学基金(61732004, 62072113)


Construction and Application of Life Insurance Knowledge Graph
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    辅助投保人了解保险产品的条款是保险应用关注的热点问题之一, 借助知识图谱技术辅助人身保险业务开展是一种可行的方法. 本文首先从多源数据中提取并构建人身保险知识图谱LIKG. 具体而言, 构建BERT-IDCNN-BiLSTM-CRF模型提取非结构化文本数据的实体, 通过多种短文本相似度算法以及集成排序算法完成实体对齐; 设计并使用Bootstrapping和分类预测两阶段抽取方法对保险产品进行属性填充. 然后, 根据构建的LIKG, 设计开发原型系统, 该系统使用实体抽取和属性抽取算法提供知识获取功能、设计CF-IIF指标提供属性推荐功能以及实现可视化界面帮助用户快速掌握人身保险产品的信息, 展示LIKG的应用价值.

    Abstract:

    Assisting users in understanding the clauses of insurance products is one of the hot issues in insurance applications. It is feasible to assist the life insurance business with knowledge graph technology. The life insurance knowledge graph (LIKG) is extracted and constructed by multi-source data. Specifically, the BERT-IDCNN-BiLSTM-CRF model is applied to extract entities from unstructured data, and the entity is aligned by a variety of short text similarity algorithms and ranking ensemble algorithm. A two-stage extraction algorithm is designed to fill the attributes of insurance products by Bootstrapping and classification prediction. Then a prototype system is designed based on LIKG. The system uses the entity extraction and the attribute extraction to provide knowledge acquisition, designs an index called CF-IIF to provide attribute recommendation function, and realizes a visual interface to help users quickly master the information of life insurance, which demonstrates the application value of LIKG.

    参考文献
    [1] 邹瑜, 顾明. 法学大辞典. 北京:中国政法大学出版社, 1991.
    [2] Zhu XR, Li ZX, Wang XD, et al. Multi-modal knowledge graph construction and application:A survey. arXiv:2202.05786, 2022.
    [3] Ali W, Saleem M, Yao B, et al. A survey of RDF stores & SPARQL engines for querying knowledge graphs. The VLDB Journal, 2022, 31(3):1-26.[doi:10.1007/s00778-021-00711-3
    [4] Li LF, Wang P, Yan J, et al. Real-world data medical knowledge graph:Construction and applications. Artificial Intelligence in Medicine, 2020, 103:101817.[doi:10.1016/j.artmed.2020.101817
    [5] 罗明. 教育测评知识图谱的构建及其表示学习. 计算机系统应用, 2019, 28(7):26-34.[doi:10.15888/j.cnki.csa.006977
    [6] InsuranceAI. 保险大脑. http://39.96.206.144/. (2016-05-16).
    [7] 中国疾病保险知识图谱. 保险知识图谱. https://ai.zhibao-tech.com/kg. (2022-03-10).
    [8] Bollacker K, Evans C, Paritosh P, et al. Freebase:A collaboratively created graph database for structuring human knowledge. Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. Vancouver:ACM, 2008. 1247-1250.
    [9] Suchanek FM, Kasneci G, Weikum G. YAGO:A core of semantic knowledge. Proceedings of the 16th international conference on World Wide Web. Banff:ACM, 2007. 697-706.
    [10] Auer S, Bizer C, Kobilarov G, et al. DBpedia:A nucleus for a Web of open data. Proceedings of the 6th International Semantic Web Conference on the Semantic Web. Busan:Springer, 2007. 722-735.
    [11] 王智悦, 于清, 王楠, 等. 基于知识图谱的智能问答研究综述. 计算机工程与应用, 2020, 56(23):1-11.[doi:10.3778/j.issn.1002-8331.2004-0370
    [12] Bouraga S, Jureta I, Faulkner S, et al. Knowledge-based recommendation systems:A survey. International Journal of Intelligent Information Technologies, 2014, 10(2):1-19.[doi:10.4018/ijiit.2014040101
    [13] 王建勋, 华丽, 邓世超, 等. 基于CiteSpace国内干旱遥感监测的知识图谱分析. 干旱区地理, 2019, 42(1):154-161
    [14] 江双五, 刘惠兰, 温华洋, 等. 气象记录档案知识图谱构建. 计算机系统应用, 2022, 31(1):73-82.[doi:10.15888/j.cnki.csa.008315
    [15] Zhao MX, Wang H, Guo J, et al. Construction of an industrial knowledge graph for unstructured Chinese text learning. Applied Sciences, 2019, 9(13):2720.[doi:10.3390/app9132720
    [16] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging. arXiv:1508.01991, 2015.
    [17] Strubell E, Verga P, Belanger D攬渠挼敩 ̄捥汴愠獡獬椼是楩挾愮琠楆潡湳孴?慡獮瑤攠牡?獣?瑲桡整獥椠獥嵮??坴慹琠敲牥汣潯潧?啩湴楩癯敮爠獷楩瑴票?潩晴?坲慡瑴敥牤氠潤潩???づ????扮牶?孬??嵩??楳?匠??婯档慥潥?婩???甠?剦????椠?攰琱?愠汃??楦????湣慥氠潯杮椠捅慭汰?牲敩慣獡潬渠楍湥杴?潯湤??桩楮渠敎獡整?浲潡牬瀠桌潡汮潧杵楡捧慥氠?慲湯摣?獳敳浩慮湧琮椠捃?牰敥汮慨瑡楧潥湮猺??偳牯潣捩敡整摩楯湮朠獦?潲映?瑯桭数???瑴桩??湡湬甠慌汩??敵敩瑳楴湩杣?漬映′琰栱攷??猲猶漷挰椭愲琶椸漰渮?晢潲爾??漸浝瀠畄瑥慶瑬楩潮渠慊氬??楨湡杮畧椠獍瑗椬挠獌???敋氬戠漼畩爾湥整??????资?ㄠ????????????扩牮?孮??嵯??楤略?奰???佤瑩瑲?????潮祡慬氠?乲???楦?敲瑭?慲汳??楯???剡潮??剡呧慥???牤潥扲畳獴瑡汮祤?潮灧琮椠浐楲穯散摥???剮呧?瀠牯敦琠牴慨楥渠椲渰朱?愠灃灯牮潦慥捲桥??慥爠塯楦瘠??????????休???ど????扃牨?孰?づ嵲?卯慦渠桴?噥???敳扯畣瑩?????栠慦畯浲漠湃摯?????楴?敯瑮?慬氠??楮????楴獩瑣楳氺??剭呡??慌?摮楧獵瑡楧汥氠敔摥?癨敮牯獬楯潧湩?潳昮???剮呮?卡浰慯汬汩敳爺??晁慃獌琬攠爲??挸栮攠愴瀱攷爱?愴渱搸?氮椼杢桲琾敛爱??愠牄塡楩瘠???ㄠし?の?ㄠじ????どㄠ???戼物?et al. Named entity recognition using BERT BiLSTM CRF for Chinese electronic health records. Proceedings of the 2019 12th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI). Suzhou:IEEE, 2019. 1-5.
    [20] 张凯伦. 中文人物属性抽取技术的研究与实现[硕士学位论文]. 北京:北京邮电大学, 2016.
    [21] Mooney CZ, Duval RD. Bootstrapping:A Nonparametric Approach to Statistical Inference. Thousand Oaks:SAGE Publications Inc., 1993.
    [22] 李勇, 张志刚. 领域本体构建方法研究. 计算机工程与科学, 2008, 30(5):129-131.[doi:10.3969/j.issn.1007-130X.2008.05.039
    [23] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach:Curran Associates Inc., 2017. 6000-6010.
    [24] Ma YJ, Yu DH, Wu T, et al. PaddlePaddle:An open-source deep learning platform from industrial practice. Frontiers of Data and Computing, 2019, 1(1):105-115
    [25] Memon J, Sami M, Khan RA, et al. Handwritten optical character recognition (OCR):A comprehensive systematic literature review (SLR). IEEE Access, 2020, 8:142642-142668.[doi:10.1109/ACCESS.2020.3012542
    [26] Hong YZ, Yu XG, He N, et al. FASPell:A fast, adaptable, simple, powerful Chinese spell checker based on DAE-decoder paradigm. Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019). Hong Kong:EMNLP, 2019. 160-169.
    [27] Chen YH. Convolutional neural network for sent???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈浩远,何震瀛,刘晓清,杨阳,汤路民.人身保险知识图谱的构建与应用.计算机系统应用,2023,32(1):75-86

复制
分享
文章指标
  • 点击次数:1036
  • 下载次数: 2249
  • HTML阅读次数: 1982
  • 引用次数: 0
历史
  • 收稿日期:2022-05-31
  • 最后修改日期:2022-06-27
  • 在线发布日期: 2022-08-26
文章二维码
您是第11245625位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号