基于自注意力网络的时间感知序列化推荐
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省研究生教育教学改革课题(JGZZ19_038)


Time-aware Sequential Recommendation Based on Self-attention Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着信息技术的发展, 推荐系统作为信息过载时代的重要工具, 正扮演着越来越重要的角色. 基于内容和协同过滤的传统推荐系统, 倾向于以静态方式对用户与商品交互进行建模, 以获取用户过去的长期偏好. 考虑到用户的偏好往往是动态的, 且具有非持续性和行为依赖性, 序列化推荐方法将用户与商品的交互历史建模为有序序列, 能有效捕获商品的依赖关系和用户的短期偏好. 然而多数序列化推荐模型过于强调用户-商品交互的行为顺序, 忽视了交互序列中的时间信息, 即隐式假设了序列中相邻商品具有相同的时间间隔, 在捕捉包含时间动态的用户偏好上具有局限性. 针对以上问题, 文中提出基于自注意力网络的时间感知序列化推荐(self-attention-based network for time-aware sequential recommendation, SNTSR)模型, 该模型将时间信息融入改进的自注意力网络中, 以探索动态时间对下一商品预测的影响. 同时, SNTSR独立计算位置相关性, 以消除可能引入的噪声相关性, 增强捕获用户序列模式的能力. 在两个真实世界数据集上的大量实验表明, SNTSR始终优于一组先进的序列化推荐模型.

    Abstract:

    As information technology develops, recommendation system serves as an important tool in the era of information overload and plays an increasingly important role. Traditional recommendation systems based on content and collaborative filtering tend to model the interaction between users and items in a static way to obtain users’ previous long-term preferences. Because users’ preferences are often dynamic, unsustainable, and behavior-dependent, sequential recommendation methods model the interaction histories between users and items as ordered sequences, which can effectively capture the dependencies between items and users’ short-term preferences. However, most sequential recommendation models overemphasize the behavior order of user-item interaction and ignore the temporal information in interaction sequences. In other words, they implicitly assume that adjacent items in the sequences have the same time interval, which leads to limitations in capturing users’ preferences that include temporal dynamics. In response to the above problems, this study proposes a self-attention-based network for time-aware sequential recommendation (SNTSR) model, which integrates temporal information into an improved self-attention network to explore the impact of dynamic time on the prediction of the next item. At the same time, SNTSR independently calculates position correlation to eliminate the noise correlations that may be introduced and enhance the ability to capture users’ sequential patterns. Extensive experimental studies are carried out on two real-world datasets, and results show that SNTSR consistently outperforms a set of state-of-the-art sequential recommendation models.

    参考文献
    相似文献
    引证文献
引用本文

孟志鹏,成卫青.基于自注意力网络的时间感知序列化推荐.计算机系统应用,2023,32(1):197-205

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-12
  • 最后修改日期:2022-06-15
  • 录用日期:
  • 在线发布日期: 2022-08-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号