基于多任务深度学习的HXDSP多簇软流水研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家核高基重大专项(2012ZX01034-001-001)


Research on Multi-cluster Software Pipelining of HXDSP Based on Multi-task Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前编译优化领域的深度学习模型普遍采用单任务学习而难以利用多个任务间的相关性提升模型整体编译加速效果的问题, 提出了一种基于多任务深度学习的编译优化方法. 该方法使用图神经网络 (GNN) 从C程序的抽象语法树 (ASTs) 和数据控制流图 (CDFGs) 中学习得到程序特征, 然后对程序特征同步预测HXDSP软件流水启动间隔和循环展开因子. 在DSPStone数据集上的实验结果表明, 该多任务方法取得了相对于单任务方法12%的性能提升.

    Abstract:

    The current deep learning models in the field of compilation optimization generally perform single-task learning and fail to use the correlation among multiple tasks to improve their overall compilation acceleration effect. For this reason, a compilation optimization method based on multi-task deep learning is proposed. This method uses the graph neural network (GNN) to learn program features from the abstract syntax trees (ASTs) and control data flow graphs (CDFGs) of the C program and then predicts the initiation interval and loop unrolling factor for the software pipelining of the HX digital signal processor (HXDSP) synchronously according to program features. Experimental results on the DSPStone dataset show that the proposed multi-task method achieves a performance improvement of 12% compared with that of the single-task method.

    参考文献
    相似文献
    引证文献
引用本文

刘纯纲,周鹏,郑启龙.基于多任务深度学习的HXDSP多簇软流水研究.计算机系统应用,2022,31(12):112-119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-28
  • 最后修改日期:2022-04-22
  • 录用日期:
  • 在线发布日期: 2022-08-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号