室内可见光多用户MIMO系统改进BD预编码算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Optimal BD Precoding Algorithm for Indoor Visible Light Multiuser MIMO System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    块对角化(block diagonalization, BD)算法是一种多输入多输出的传统线性预编码算法, 其核心思想是通过奇异值分解(singular value decomposition, SVD)找到干扰矩阵零空间的正交基, 从而完全消除多用户干扰(multiuser interference, MUI), 但是随着收发端数目的增多, BD预编码算法所需的计算复杂也大大增加, 成为了制约其发展的关键因素之一. 为此, 本文提出了一种改进的低复杂度BD算法——基于正交分解中的施密特正交化求逆与格基规约操作的组合算法, 对传统BD算法两次高复杂度操作的奇异值分解用施密特正交化和格基规约操作进行替换, 从而降低算法复杂度. 结果表明, 本文改进算法的计算复杂度上降低了46.7%, 系统和容量上得到了2–10 bits/Hz的提高, 同时误码率上得到了2个量级的优化.

    Abstract:

    Block diagonalization (BD) belongs to a traditional linear precoding algorithm with multiple inputs and outputs, and its core idea is to find the orthogonal basis of the null space in interference matrixes through singular value decomposition (SVD), so as to eliminate the multiuser interference (MUI). However, as the number of transmitters and receivers increases, the BD precoding algorithm faces more complex computation, which has become one of the key factors restricting its development. Therefore, this study proposes an optimal low-complexity BD algorithm. The algorithm is based on the combination algorithm of Schmidt orthogonalization inversion and lattice reduction operation in orthogonal decomposition, and it replaces the SVD of two high-complexity operations on the traditional BD algorithm by Schmidt orthogonalization inversion and lattice reduction operation and thus reduces the algorithm complexity. The results show that the computational complexity of the optimal algorithm is reduced by 46.7%, and the system and capacity are increased by 2–10 bits/Hz. Furthermore, the bit error rate is improved by two orders of magnitude.

    参考文献
    相似文献
    引证文献
引用本文

吴鹏飞,潘婷.室内可见光多用户MIMO系统改进BD预编码算法.计算机系统应用,2022,31(12):227-234

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-18
  • 最后修改日期:2022-05-22
  • 录用日期:
  • 在线发布日期: 2022-08-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号