离散鲸鱼算法求解拆解序列规划问题
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Disassembly Sequence Planning Using Discrete Whale Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    工业产品的回收再制造有利于降低生产成本和保护环境, 而制定优秀的产品拆解序列规划提高拆解效率、降低回收成本为其关键. 针对回收设备在实际拆解中的因素, 建立一种基于离散鲸鱼算法(DWOA)的拆解序列规划模型. 该模型目标函数以位置改变为代价作为新的评价指标, 利用分层组合的方法快速生成初始群体. 离散鲸鱼算法具有优先保护约束交叉机制、启发式变异、优秀的全局和局部搜索能力. 以回收上橡皮板和空气围带进行对比实验, 结果表明在相同时间下, 离散鲸鱼算法的算法稳定性、寻优能力、收敛速度都要优于其他算法.

    Abstract:

    Recycling and remanufacturing industrial products is conducive to reducing production costs and protecting the environment. It is very important to make excellent equipment disassembly sequence planning to improve disassembly efficiency and reduce recovery costs. For the factors of equipment recycling in actual disassembly, a disassembly sequence planning model based on a discrete whale optimization algorithm (DWOA) is proposed in this study. The objective function of the model employs the position change cost as the new evaluation indicator and adopts the stratified combination method to rapidly generate the initial population. DWOA features the precedence preservative crossover mechanism, heuristic mutation, and better global and local search ability. Comparative experiments are conducted with recycled upper rubber plate and standstill seal to test the feasibility of the proposed algorithm. The experimental results show that at the same time, the algorithm stability, optimization ability, and convergence speed of DWOA are better than those of other algorithms.

    参考文献
    相似文献
    引证文献
引用本文

顾嘉豪.离散鲸鱼算法求解拆解序列规划问题.计算机系统应用,2022,31(12):335-341

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-23
  • 最后修改日期:2022-05-22
  • 录用日期:
  • 在线发布日期: 2022-08-12
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号