量子芯片测评技术综述
作者:
基金项目:

国家超算郑州中心创新生态系统建设专项(201400210200)


Overview on Quantum Chip Evaluation Technology
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在研制量子芯片时对其性能进行测评, 以校准量子算法实际执行结果与理论结果的拟合程度是量子计算优于经典计算的重要一步. 然而, 目前国内外对量子芯片性能测评方面并没有统一的基准测试, 对于量子芯片局部指标的测评标准容易导致人们对芯片整体性能的误解. 鉴于此, 本文首先简述现有的量子芯片性能指标, 其次通过对测评方法进行分类, 概述现今量子芯片测评方法, 最后总结量子芯片测评技术的现存问题并对未来的测评技术进行展望. 本综述可为从事相关工作的人员进行查阅提供便利.

    Abstract:

    It is an important step for quantum computing to outperform classical computing by evaluating quantum chips’ performance during their development to calibrate the degree of fit between the actual execution results and theoretical results of quantum algorithms. However, at present, there is no unified benchmark for evaluating the performance of quantum chips both in China and abroad, and the evaluation standards for local indicators of quantum chips can easily lead to misunderstandings about the overall performance of the chips. In view of this, this study first briefly describes performance indicators of existing quantum chips, then reviews current quantum chip evaluation methods by classifying evaluation technologies, and finally summarizes the existing problems of quantum chip evaluation technologies and looks forward to the future evaluation technology. In addition, the review can be easily sourced by those working in the relevant fields.

    参考文献
    [1] Buhrman H. A short note on Shor’s factoring algorithm. ACM SIGACT News, 1996, 27(1): 89–90. [doi: 10.1145/230514.230515
    [2] Grover LK. A fast quantum mechanical algorithm for database search. Proceedings of the 28th Annual ACM Symposium on Theory of Computing. Philadelphia: Association for Computing Machinery, 1996. 212–219.
    [3] Harrow AW, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations. Physical Review Letters, 2009, 103(15): 150502. [doi: 10.1103/PhysRevLett.103.150502
    [4] Huang HL, Wu DC, Fan DJ, et al. Superconducting quantum computing: A review. Science China Information Sciences, 2020, 63(8): 180501. [doi: 10.1103/PhysRevLett.118.210504
    [5] Bishop LS, Bravyi S, Cross A, et al. Quantum volume. https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf. (2017-03-04).
    [6] Cross AW, Bishop LS, Sheldon S, et al. Validating quantum computers using randomized model circuits. Physical Review A, 2019, 100(3): 032328. [doi: 10.1103/PhysRevA.100.032328
    [7] Blume-Kohout R, Young KC. A volumetric framework for quantum computer benchmarks. Quantum, 2020, 4: 362. [doi: 10.22331/q-2020-11-15-362
    [8] Jurcevic P, Javadi-Abhari A, Bishop LS, et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Science and Technology, 2021, 6(2): 025020. [doi: 10.1088/2058-9565/abe519
    [9] Wack A, Paik H, Javadi-Abhari A, et al. Quality, speed, and scale: Three key attributes to measure the performance of near-term quantum computers. arXiv:2110.14108. 2021.
    [10] IBM Quantum Services. Services. https://quantum-computing.ibm.com/services?services=systems. [2022-01-17].
    [11] Wilmott CM, Wild PR. On a generalized quantum SWAP gate. International Journal of Quantum Information, 2012, 10(3): 1250034. [doi: 10.1142/S0219749912500347
    [12] Schlosshauer M. Quantum decoherence. arXiv:1911.06282, 2019.
    [13] Zurek WH. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 2003, 75(3): 715–775. [doi: 10.1103/RevModPhys.75.715
    [14] Lü C, Cheng JL, Wu MW, et al. Spin relaxation time, spin dephasing time and ensemble spin dephasing time in n-type GaAs quantum wells. Physics Letters A, 2007, 365(5–6): 501–504. [doi: 10.1016/j.physleta.2007.02.030
    [15] Laird BB, Skinner JL. T2 can be greater than 2T1 even at finite temperature. The Journal of Chemical Physics, 1991, 94(6): 4405–4410. [doi: 10.1063/1.460627
    [16] Liang YC, Yeh YH, Mendonça PEMF, et al. Quantum fidelity measures for mixed states. Reports on Progress in Physics, 2019, 82(7): 076001. [doi: 10.1088/1361-6633/ab1ca4
    [17] Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505–510. [doi: 10.1038/s41586-019-1666-5
    [18] Gentile TR, Hughey BJ, Kleppner D, et al. Experimental study of two-photon Rabi oscillations. Coherence and Quantum Optics VI. Boston: Springer, 1990. 4854–4862.
    [19] Nishimura S, Torii HA, Fukao Y, et al. Rabi-oscillation spectroscopy of the hyperfine structure of muonium atoms. Physical Review A, 2021, 104(2): L020801. [doi: 10.1103/PhysRevA.104.L020801
    [20] O’Malley PJJ, Kelly J, Barends R, et al. Qubit metrology of ultralow phase noise using randomized benchmarking. Physical Review Applied, 2015, 3(4): 044009. [doi: 10.1103/PhysRevApplied.3.044009
    [21] Guan Q, Bersano TM, Mossman S, et al. Rabi oscillations and Ramsey-type pulses in ultracold bosons: Role of interactions. Physical Review A, 2020, 101(6): 063620. [doi: 10.1103/PhysRevA.101.063620
    [22] Skovsen E, Stapelfeldt H, Juhl S, et al. Quantum state tomography of dissociating molecules. Physical Review Letters, 2003, 91(9): 090406. [doi: 10.1103/PhysRevLett.91.090406
    [23] Mouritzen AS, Mølmer K. Quantum state tomography of molecular rotation. The Journal of Chemical Physics, 2006, 124(24): 244311. [doi: 10.1063/1.2208351
    [24] Naghiloo M, Abbasi M, Joglekar YN, et al. Quantum state tomography across the exceptional point in a single dissipative qubit. Nature Physics, 2019, 15(12): 1232–1236. [doi: 10.1038/s41567-019-0652-z
    [25] Altepeter JB, Branning D, Jeffrey E, et al. Ancilla-assisted quantum process tomography. Physical Review Letters, 2003, 90(19): 193601. [doi: 10.1103/PhysRevLett.90.193601
    [26] O'Brien JL, Pryde JP, Gilchrist A, et al. Quantum process tomography of a controlled-NOT gate. Physical Review Letters, 2004, 93(8): 080502. [doi: 10.1103/PhysRevLett.93.080502
    [27] Branderhorst MPA, Nunn J, Walmsley IA, et al. Simplified quantum process tomography. New Journal of Physics, 2009, 11(11): 115010. [doi: 10.1088/1367-2630/11/11/115010
    [28] Blume-Kohout R, Gamble JK, Nielsen E, et al. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nature Communications, 2017, 8: 14485. [doi: 10.1038/ncomms14485
    [29] Nielsen E, Gamble JK, Rudinger K, et al. Gate set tomography. Quantum, 2021, 5: 557. [doi: 10.22331/q-2021-10-05-557
    [30] Blumoff JZ, Pan AS, Keating TE, et al. Fast and high-fidelity state preparation and measurement in triple-quantum-dot spin qubits. PRX Quantum, 2022, 3(1): 010352. [doi: 10.1103/PRXQuantum.3.010352
    [31] Erhard A, Wallman JJ, Postler L, et al. Characterizing large-scale quantum computers via cycle benchmarking. Nature Communications, 2019, 10(1): 5347. [doi: 10.1038/s41467-019-13068-7
    [32] Knill E, Leibfried D, Reichle R, et al. Randomized benchmarking of quantum gates. Physical Review A, 2008, 77(1): 012307. [doi: 10.1103/PhysRevA.77.012307
    [33] Magesan E, Gambetta JM, Emerson J. Scalable and robust randomized benchmarking of quantum processes. Physical Review Letters, 2011, 106(18): 180504. [doi: 10.1103/PhysRevLett.106.180504
    [34] Gaebler JP, Meier AM, Tan TR, et al. Randomized benchmarking of multiqubit gates. Physical Review Letters, 2012, 108(26): 260503. [doi: 10.1103/PhysRevLett.108.260503
    [35] Wallman JJ, Flammia ST. Randomized benchmarking with confidence. New Journal of Physics, 2014, 16(10): 103032. [doi: 10.1088/1367-2630/16/10/103032
    [36] Harper R, Flammia ST, Wallman JJ. Efficient learning of quantum noise. Nature Physics, 2020, 16(12): 1184–1188. [doi: 10.1038/s41567-020-0992-8
    [37] Vatan F, Williams C. Optimal quantum circuits for general two-qubit gates. Physical Review A, 2004, 69(3): 032315. [doi: 10.1103/PhysRevA.69.032315
    [38] Zulehner A, Wille R. Compiling SU(4) quantum circuits to IBM QX architectures. Proceedings of the 24th Asia and South Pacific Design Automation Conference. Tokyo: Association for Computing Machinery, 2019. 185–190.
    [39] Aaronson S, Arkhipov A. The computational complexity of linear optics. Proceedings of the 43rd Annual ACM Symposium on Theory of Computing. San Jose: Association for Computing Machinery, 2011. 333–342.
    [40] Wu JJ, Liu Y, Zhang BD, et al. A benchmark test of boson sampling on Tianhe-2 supercomputer. National Science Review, 2018, 5(5): 715–720. [doi: 10.1093/nsr/nwy079
    [41] Zhong HS, Wang H, Deng YH, et al. Quantum computational advantage using photons. Science, 2020, 370(6523): 1460–1463. [doi: 10.1126/science.abe8770
    [42] Hamilton CS, Kruse R, Sansoni L, et al. Gaussian boson sampling. Physical Review Letters, 2017, 119(17): 170501. [doi: 10.1103/PhysRevLett.119.170501
    [43] Bouland A, Fefferman B, Nirkhe C, et al. On the complexity and verification of quantum random circuit sampling. Nature Physics, 2019, 15(2): 159–163. [doi: 10.1038/s41567-018-0318-2
    [44] Wu YL, Bao WS, Cao SR, et al. Strong quantum computational advantage using a superconducting quantum processor. Physical Review Letters, 2021, 127(18): 180501. [doi: 10.1103/PhysRevLett.127.180501
    [45] Dongarra JJ, Luszczek P, Petitet A. The LINPACK Benchmark: Past, present and future. Concurrency and Computation Practice and Experience, 2003, 15(9): 803–820. [doi: 10.1002/cpe.728
    [46] Dong YL, Lin L. Random circuit block-encoded matrix and a proposal of quantum LINPACK benchmark. Physical Review A, 2021, 103(6): 062412. [doi: 10.1103/PhysRevA.103.062412
    [47] Gilyén A, Su Y, Low GH, et al. Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. Phoenix: Association for Computing Machinery, 2019. 193–204.
    [48] Proctor T, Rudinger K, Young K, et al. Measuring the capabilities of quantum computers. Nature Physics, 2022, 18(1): 75–79. [doi: 10.1038/s41567-021-01409-7
    [49] TOP500. TOP500 the list. https://www.top500.org/. [2022-01-17].
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何明,刘晓楠,王俊超.量子芯片测评技术综述.计算机系统应用,2022,31(12):1-9

复制
分享
文章指标
  • 点击次数:1360
  • 下载次数: 6525
  • HTML阅读次数: 4861
  • 引用次数: 0
历史
  • 收稿日期:2022-03-15
  • 最后修改日期:2022-04-19
  • 在线发布日期: 2022-08-26
文章二维码
您是第11118110位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号