基于层次密度聚类的去噪自适应混合采样
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Denoising and Adaptive Hybrid Sampling Based on Hierarchical Density Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对非平衡数据存在的类内不平衡、噪声、生成样本覆盖面小等问题, 提出了基于层次密度聚类的去噪自适应混合采样算法(adaptive denoising hybrid sampling algorithm based on hierarchical density clustering, ADHSBHD). 首先引入HDBSCAN聚类算法, 将少数类和多数类分别聚类, 将全局离群点和局部离群点的交集视为噪声集, 在剔除噪声样本之后对原数据集进行处理, 其次, 根据少数类样本中每簇的平均距离, 采用覆盖面更广的采样方法自适应合成新样本, 最后删除一部分多数类样本集中的对分类贡献小的点, 使数据集均衡. ADHSBHD算法在7个真实数据集上进行评估, 结果证明了其有效性.

    Abstract:

    As imbalanced data are exposed to problems such as intra-class imbalance, noise, and small coverage of generated samples, an adaptive denoising hybrid sampling algorithm based on hierarchical density clustering (ADHSBHD) is proposed. Firstly, the clustering algorithm HDBSCAN is introduced to perform clustering on minority classes and majority classes separately; the intersection of global and local outliers is regarded as the noise set, and the original data set is processed after noise samples are eliminated. Secondly, according to the average distance between clusters of samples in minority classes, the adaptive sampling method with broader coverage is used to synthesize new samples. Finally, some points that contribute little to the classification of majority classes are deleted to balance the dataset. The ADHSBHD algorithm is evaluated on six real data sets, and the results can prove its effectiveness.

    参考文献
    相似文献
    引证文献
引用本文

姜新盈,王舒梵,严涛.基于层次密度聚类的去噪自适应混合采样.计算机系统应用,2022,31(10):206-210

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-27
  • 最后修改日期:2022-02-24
  • 录用日期:
  • 在线发布日期: 2022-06-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号