快速近似计算Shapley值的归因解释方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Attribution Explanation Method for Fast Approximation of Shapley Values
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Shapley值归因解释方法虽然能更准确量化解释结果, 但过高的计算复杂度严重影响了该方法的实用性. 本文引入KD树重新整理待解释模型的预测数据, 通过在KD树上插入虚节点, 使之满足TreeSHAP算法的使用条件, 在此基础上提出了KDSHAP方法. 该方法解除了TreeSHAP算法仅能解释树结构模型的限制, 将该算法计算Shapley值的高效性放宽到对所有的黑盒模型的解释中, 同时保证了计算准确度. 通过实验对比分析, KDSHAP方法的可靠性, 以及在解释高维输入模型时的适用性.

    Abstract:

    Although the attribution explanation method based on Shapley value can quantify the interpretation results more accurately, the excessive computational complexity seriously affects the practicality of this method. In this study, we introduce the k-dimensional (KD) tree to reorganize the predicted data of the model to be explained, insert virtual nodes into the KD tree so that it meets the application conditions of the TreeSHAP algorithm, and then propose the KDSHAP method. This method lifts the restriction that the TreeSHAP algorithm can only explain tree models and broadens the efficiency of the algorithm in calculating Shapley value to the explanation of all black-box models without compromising calculation accuracy. The reliability of the KDSHAP method and its applicability in interpreting high-dimensional input models are analyzed through experimental comparisons.

    参考文献
    相似文献
    引证文献
引用本文

余晓晗,王从波,谢瑗瑗,张中辉,马荣.快速近似计算Shapley值的归因解释方法.计算机系统应用,2022,31(11):290-295

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-28
  • 最后修改日期:2022-02-24
  • 录用日期:
  • 在线发布日期: 2022-06-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号