基于特征优化的面向对象建筑物提取
作者:
基金项目:

国家自然科学基金(41571346)


Object-oriented Building Extraction Based on Feature Optimization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    相比于基于像素的建筑物提取方法, 面向对象方法能减少“异物同谱”和“同物异谱”现象, 提高提取精度; 针对遥感影像特征繁多, 造成特征维数灾难的问题, 本文提出了一种面向对象的特征优化方法进行建筑物提取. 首先将最小误差自动阈值分割方法和多尺度分割相结合, 优化分割技术; 然后基于Relief算法和fast correlation-based filter (FCBF)算法进行特征选择, 构建最优特征子集; 最后使用随机森林方法进行建筑物提取并用最小外接矩形方法优化建筑物边界. 结果显示, 特征重要性差异较大, 基于最优特征子集建筑物提取的总体精度达到0.93, Kappa系数为0.91, 明显高于原始特征集和优化特征集提取结果.

    Abstract:

    Compared with pixel-based building extraction methods, object-oriented methods can reduce the phenomena of “the same spectrum for different objects” and “different spectra for the same object” and improve extraction accuracy. To address the curse of feature dimensionality due to numerous features of remote sensing images, this study proposes an object-oriented feature optimization method for building extraction. First of all, minimum error automatic threshold segmentation is combined with multi-scale segmentation to optimize the segmentation technology. Then, features are selected by the Relief algorithm and fast correlation-based filter (FCBF) algorithm to construct the optimal feature subset. Finally, buildings are extracted by the random forest method, and building boundaries are optimized by the minimum bounding rectangle method. The results show that the importance of features varies greatly. An overall accuracy of 0.93 is achieved by building extraction based on the optimal feature subset, and the Kappa coefficient is 0.91, which is significantly higher than the extraction results of the original feature set and the optimized feature set.

    参考文献
    [1] Huang X, Zhang LP. A multidirectional and multiscale morphological index for automatic building extraction from MultiSpectral GeoEye-1 imagery. Photogrammetric Engineering & Remote Sensing, 2011, 77(7): 721–732
    [2] 尹峰, 祁琼, 许博文. 基于角点的高分辨率遥感影像建筑物提取. 地理空间信息, 2018, 16(10): 58–61, 69. [doi: 10.3969/j.issn.1672-4623.2018.10.017
    [3] Lin C, Nevatia R. Building detection and description from a single intensity image. Computer Vision and Image Understanding, 1998, 72(2): 101–121. [doi: 10.1006/cviu.1998.0724
    [4] 黄昕, 张良培, 李平湘. 融合形状和光谱的高空间分辨率遥感影像分类. 遥感学报, 2007, 11(2): 193–200. [doi: 10.11834/jrs.20070226
    [5] 朱芳芳, 李仲勤, 杨树文, 等. 特征分量的城市建筑物面向对象提取方法. 测绘科学, 2020, 45(1): 84–91
    [6] 施文灶, 毛政元. 基于图分割的高分辨率遥感影像建筑物变化检测研究. 地球信息科学学报, 2016, 18(3): 423–432
    [7] 梁加玲, 刘彦花, 徐军, 等. 基于ReliefF算法的遥感影像分类特征优化. 地矿测绘, 2020, 36(3): 1–5. [doi: 10.3969/j.issn.1007-9394.2020.03.001
    [8] 肖艳, 姜琦刚, 王斌, 等. 基于ReliefF和PSO混合特征选择的面向对象土地利用分类. 农业工程学报, 2016, 32(4): 211–216. [doi: 10.11975/j.issn.1002-6819.2016.04.030
    [9] Kittler J, Illingworth J. Minimum error thresholding. Pattern Recognition, 1986, 19(1): 41–47.
    [10] 宿方睿, 郭长宝, 张学科, 等. 基于面向对象分类法的川藏铁路沿线大型滑坡遥感解译. 现代地质, 2017, 31(5): 930–942. [doi: 10.3969/j.issn.1000-8527.2017.05.005
    [11] Yu L, Liu H. Feature selection for high-dimensional data: A fast correlation-based filter solution. Proceedings of the 20th International Conference. Washington: AAAI Press, 2003. 856–863.
    [12] 成洁. 基于面向对象的高分辨率遥感影像建筑物提取研究[硕士学位论文]. 西安: 西安科技大学, 2020.
    [13] 王笑影, 周玉科, 温日红. 基于Landsat-8影像和随机森林方法的土地分类研究. 测绘与空间地理信息, 2020, 43(11): 1–3. [doi: 10.3969/j.issn.1672-5867.2020.11.001
    [14] 张志强, 张新长, 辛秦川, 等. 结合像元级和目标级的高分辨率遥感影像建筑物变化检测. 测绘学报, 2018, 47(1): 102–112. [doi: 10.11947/j.AGCS.2018.20170483
    相似文献
    引证文献
引用本文

李星,曹建农.基于特征优化的面向对象建筑物提取.计算机系统应用,2022,31(9):360-367

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-20
  • 最后修改日期:2022-01-18
  • 在线发布日期: 2022-06-28
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号