基于DWT-GCN的短时交通流预测
作者:
基金项目:

国家重点研发计划(2018YFC0808706); 陕西省高速公路建设集团公司项目(KY-1904)


Short-term Traffic Flow Prediction Based on DWT-GCN
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    交通流预测是智慧交通领域的研究热点之一, 为了深层次地挖掘交通流序列的时空特征, 提高预测精度, 提出了一种基于离散小波变换(discrete wavelet transformation, DWT)和图卷积网络(graph convolutional network, GCN)短时交通流预测模型. 首先, 利用DWT算法将原始交通序列分解为细节分量与近似分量, 降低交通流数据的非平稳性; 其次, 引入距离因子项优化GCN模型中的邻接矩阵, 进一步提取路网的空间特征; 最后, 将DWT分解的各组分量数据分别作为GCN模型的输入进行预测, 并对各组预测结果进行重构, 得到最终预测值. 利用美国加利福尼亚州交通局PeMS数据库实测交通数据对模型进行测试, 结果表明, 该模型相比于ARIMA、WNN、GCN, 平均绝对误差平均降低57%, 平均绝对百分比误差平均降低59%, 是一种有效的短时交通流预测方法.

    Abstract:

    Traffic prediction is one of the research focuses in intelligent transportation. This study proposes a short-term traffic flow prediction model based on discrete wavelet transformation (DWT) and graph convolutional networks (GCNs) to deeply explore the temporal and spatial features of traffic flow sequences and improve prediction accuracy. Firstly, the original traffic sequences are decomposed into detailed and approximate components by the DWT algorithm to reduce the non-stationarity of traffic flow data. Secondly, the adjacency matrix of the GCN model is optimized by introducing the distance factor term to extract the spatial features of road networks. Finally, each group of components decomposed by DWT is used as the input of the GCN model separately for prediction, and the prediction results of each group are reconstructed to obtain the final prediction value. The model is tested on the Caltrans PeMS dataset, and the test results reveal that compared with the ARIMA, WNN, and GCN model, the proposed model has reduced its mean absolute error (MAE) and mean absolute percentage error (MAPE) by 57% and 59%, respectively, which proves to be an effective method for predicting short-term traffic flow.

    参考文献
    [1] Tang SH, Kubo N, Kawanishi N, et al. Cooperative relative positioning for intelligent transportation system. International Journal of Intelligent Transportation Systems Research, 2015, 13(3): 131–142. [doi: 10.1007/s13177-014-0091-2
    [2] 杨东龙. 基于ARIMA模型的区间道路短时车流量预测研究. 电子设计工程, 2021, 29(13): 38–42. [doi: 10.14022/j.issn1674-6236.2021.13.009
    [3] 靳小飞. 基于ARFIMA混合模型的短时交通流预测研究[硕士学位论文]. 武汉: 华中科技大学, 2020.
    [4] 张天逸, 孙毅然, 刘凡琪, 等. 基于K均值聚类算法与RBF神经网络的交通流预测方法. 智能计算机与应用, 2020, 10(8): 148–151. [doi: 10.3969/j.issn.2095-2163.2020.08.035
    [5] 申启东, 李文勇, 廉冠. 基于改进马尔可夫链的交通流预测方法. 黑龙江交通科技, 2021, 44(10): 178–181. [doi: 10.16402/j.cnki.issn1008-3383.2021.10.092
    [6] 罗向龙, 李丹阳, 杨彧, 等. 基于KNN-LSTM的短时交通流预测. 北京工业大学学报, 2018, 44(12): 1521–1527
    [7] 李磊, 张青苗, 赵军辉, 等. 基于改进CNN-LSTM组合模型的分时段短时交通流预测. 应用科学学报, 2021, 39(2): 185–198. [doi: 10.3969/j.issn.0255-8297.2021.02.001
    [8] 殷礼胜, 孙双晨, 魏帅康, 等. 基于自适应VMD-Attention-BiLSTM的交通流组合预测模型. 电子测量与仪器学报, 2021, 35(7): 130–139. [doi: 10.13382/j.jemi.B2003575
    [9] 桂智明, 李壮壮, 郭黎敏. 基于ACGRU模型的短时交通流预测. 计算机工程与应用, 2020, 56(21): 260–265. [doi: 10.3778/j.issn.1002-8331.1911-0371
    [10] 王竟成, 张勇, 胡永利, 等. 基于图卷积网络的交通预测综述. 北京工业大学学报, 2021, 47(8): 954–970. [doi: 10.11936/bjutxb2020120027
    [11] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv: 1609.02907, 2016
    [12] Cui ZY, Henrickson K, Ke RM, et al. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4883–4894. [doi: 10.1109/TITS.2019.2950416
    [13] Zhang XY, Huang C, Xu Y, et al. Spatial-temporal convolutional graph attention networks for citywide traffic flow forecasting. Proceedings of the 29th ACM International Conference on Information and Knowledge Management. Online: ACM, 2020. 1853–1862.
    [14] Song C, Lin YF, Guo SN, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI, 2020. 914–921.
    [15] Zheng Q, Feng XX, Zheng HF. Robust prediction of traffic flow based on multi-task graph convolution network. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). Chengdu: IEEE, 2020. 2053–2058.
    [16] Zhang N, Guan XF, Cao J, et al. Wavelet-HST: A wavelet-based higher-order spatio-temporal framework for urban traffic speed prediction. IEEE Access, 2019, 7: 118446–118458. [doi: 10.1109/ACCESS.2019.2936938
    [17] 倪汉杰, 蒋仲廉, 初秀民, 等. 基于DWT-LSTM的航道水位智能预测模型研究. 中国航海, 2021, 44(2): 97–102. [doi: 10.3969/j.issn.1000-4653.2021.02.016
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王雨松,吴向东,尤晨欣,廖聪.基于DWT-GCN的短时交通流预测.计算机系统应用,2022,31(9):306-312

复制
分享
文章指标
  • 点击次数:958
  • 下载次数: 2025
  • HTML阅读次数: 2865
  • 引用次数: 0
历史
  • 收稿日期:2021-12-09
  • 最后修改日期:2022-01-20
  • 在线发布日期: 2022-06-17
文章二维码
您是第12799980位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号