多因子长时序信息联合建模的深度卷积卡钻事故预测
作者:
基金项目:

中国海洋石油集团有限公司重大科技专项(T1030811PY)


Deep Convolution Sticking Prediction Based on Joint Modeling of Multi-factor Long Time Series Information
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为充分运用钻井监测平台多个监测因子的长时序信息, 实现海上石油钻井卡钻事故的准确预测, 提出一种多因子长时序信息联合建模的深度卷积卡钻预测方法(CNN-MFT), 利用自注意力机制结合卷积网络对多个监测因子的时序信息进行联合建模, 同时考虑当前时刻各因子的具体值的信息以及各因子的历史时序信息, 实现准确的卡钻预测. 使用海上钻井平台实际监测数据开展验证对比, 与目前常用的基于随机森林(RF)、SVM等8种卡钻预测方法相比, 所提的CNN-MFT方法在50%和70%等不同训练样本比例的条件下, 其卡钻事故预测准确率最高, 且稳定性强, 可为海上石油事故预测应用提供关键算法支撑.

    Abstract:

    To make full use of the long time series information of multiple monitoring factors obtained by a drilling monitoring platform and implement accurate prediction of sticking accidents in offshore oil drilling, this study proposes a deep convolution sticking prediction method based on joint modeling of multi-factor long time series information (CNN-MFT). It uses the self-attention mechanism and a CNN to jointly model the time series information of multiple monitoring factors. Meanwhile, it considers the specific value of each factor at the current moment and the historical time series information of each factor to achieve accurate sticking prediction. Verification and comparison are conducted with actual monitoring data on the offshore drilling platform. Compared with the eight commonly used sticking prediction methods such as those based on random forest (RF) and support vector machine (SVM), the proposed CNN-MFT achieves the best accuracy of sticking accident prediction under different training sample proportions, 50% and 70% for example. Meanwhile, it is also more stable. This method provides key algorithm support for applications of offshore oil accident prediction.

    参考文献
    [1] 苏兴华, 孙俊明, 高翔, 等. 基于GBDT算法的钻井机械钻速预测方法研究. 计算机应用与软件, 2019, 36(12): 87–92. [doi: 10.3969/j.issn.1000-386x.2019.12.014
    [2] 刘海龙, 李彤, 张奇志. 基于自适应遗传算法改进的BP神经网络卡钻事故预测. 现代电子技术, 2021, 44(15): 149–153. [doi: 10.16652/j.issn.1004-373x.2021.15.030
    [3] 赵志明, 邓慧静, 刘斌. 石油钻井工程事故预警研究进展. 化工设计通讯, 2021, 47(4): 180–181, 184. [doi: 10.3969/j.issn.1003-6490.2021.04.089
    [4] 刘建明, 李玉梅, 张涛, 等. 一种基于PCA-RF的卡钻预测方法. 北京信息科技大学学报, 2021, 36(1): 18–22. [doi: 10.16508/j.cnki.11-5866/n.2021.01.004
    [5] 苏晓眉, 张涛, 李玉飞, 等. 基于K-means聚类算法的沉砂卡钻预测方法研究. 钻采工艺, 2021, 44(3): 5–9
    [6] 刘光星, 翟坤, 陶宇龙, 等. 单因素时间序列ARMA建模在卡钻预测中的应用研究. 重庆科技学院学报(自然科学版), 2015, 17(1): 92–96. [doi: 10.19406/j.cnki.cqkjxyxbzkb.2015.01.024
    [7] 刘光星, 陶宇龙, 翟坤. 时间序列在循环卡钻预测中的应用研究. 重庆科技学院学报(自然科学版), 2014, 16(5): 56–59. [doi: 10.19406/j.cnki.cqkjxyxbzkb.2014.05.016
    [8] 李彤, 张奇志. 基于PSO-BP的神经网络卡钻事故预测研究. 长江信息通信, 2021, 34(2): 75–77. [doi: 10.3969/j.issn.1673-1131.2021.02.024
    [9] Ben YX, Han WL, James C, et al. Building a general and sustainable machine learning solution in a real-time drilling system. Proceedings of the IADC/SPE International Drilling Conference and Exhibition. Galveston: Society of Petroleum Engineers, 2020. 1–9.
    [10] Zha Y, Pham S. Monitoring downhole drilling vibrations using surface data through deep learning. Proceedings of 2018 SEG International Exposition and Annual Meeting. Anaheim: Society of Exploration Geophysicists, 2018. 2101–2105.
    [11] Kaneko T, Wada R, Ozaki M, et al. Combining physics-based and data-driven models for estimation of WOB during ultra-deep ocean drilling. Proceedings of the 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid: American Society of Mechanical Engineers, 2018. 1–10.
    [12] Xie HY, Shanmugam AK, Issa RRA. Big data analysis for monitoring of kick formation in complex underwater drilling projects. Journal of Computing in Civil Engineering, 2018, 32(5): 04018030. [doi: 10.1061/(ASCE)CP.1943-5487.0000773
    [13] Osarogiagbon AU, Khan F, Venkatesan R, et al. Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations. Process Safety and Environmental Protection, 2021, 147: 367–384. [doi: 10.1016/j.psep.2020.09.038
    [14] 万齐斌, 董方敏, 孙水发. 基于BiLSTM-Attention-CNN混合神经网络的文本分类方法. 计算机应用与软件, 2020, 37(9): 94–98, 201. [doi: 10.3969/j.issn.1000-386x.2020.09.016
    [15] 闫河, 董莺艳, 王鹏, 等. 基于CNN-LSTM网络的声纹识别研究. 计算机应用与软件, 2019, 36(4): 166–170. [doi: 10.3969/j.issn.1000-386x.2019.04.026
    [16] 朱婷, 王瑜, 肖洪兵, 等. 基于多通路CNN的多模态MRI神经胶质瘤分割. 计算机应用与软件, 2018, 35(4): 220–226. [doi: 10.3969/j.issn.1000-386x.2018.04.042
    [17] 吕召阳, 聂雪媛, 赵奥博. 基于CNN机翼气动系数预测. 北京航空航天大学学报. 2021: 1–10. (2021-08-16).
    [18] 赵小强, 张亚洲. 利用改进卷积神经网络的滚动轴承变工况故障诊断方法. 西安交通大学学报, 2021, 55(12): 108–118
    [19] 韦延方, 吴郑磊, 王鹏, 等.基于CNN与DCGAN的柔性直流配电网故障检测. 煤炭学报, 2021, 46(S2): 1201–1208.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张万栋,郭威龙,李炎军,李盛阳,彭巍.多因子长时序信息联合建模的深度卷积卡钻事故预测.计算机系统应用,2022,31(9):333-341

复制
分享
文章指标
  • 点击次数:803
  • 下载次数: 1627
  • HTML阅读次数: 1275
  • 引用次数: 0
历史
  • 收稿日期:2021-12-09
  • 最后修改日期:2022-01-10
  • 在线发布日期: 2022-06-16
文章二维码
您是第12795961位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号