人机对话中自然语言任务命令的识别和计划
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

云南省教育厅科学研究基金(2021J0797)


Recognition and Schedule for Natural Language-based Task Commands in Human-machine Conversation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着智能手机和智能系统的飞速发展, 使用自然语言对话的人机交互方式也成为了流行趋势. 但是如果该对话系统需要处理多功能任务类型, 那么将产生复杂的任务命令, 问题的维度也会增加. 尽管目前的NLP技术能提供一些解决方案, 但在动态范围内实现动态任务命令识别与处理的能力仍然有限, 解决复杂问题的效果还有待提高. 因此, 在本项工作中, 提供了一种结合NLP引擎和任务计划单元的方法, 根据自然语言的指令来设定任务计划, 以便对话系统能较准确地识别命令任务和相关参数, 并为任务生成相应的合理计划. 同时, 为解决自然语言对话中信息的歧义或遗漏, 还研究了一种对话策略, 在必要时能以最少的问答迭代收集对话信息.

    Abstract:

    The rapid development of smartphones and smart operating systems boosts the prevalence of natural language conversations in human-machine interactions. In the case of multiple-function tasks, however, the conversation system will generate a complex task command, and a variety of problems will arise. The current NLP technology can provide some solutions, but its capability to dynamically recognize and process task commands is insufficient in solving complex problems. In this study, we propose a solution that combines the NLP engine and task scheduling unit. Specifically, natural language commands are used for task scheduling, and thus the conversation system can accurately recognize command tasks and related parameters and generate a rational schedule for the tasks. In addition, a conversation strategy is proposed to address ambiguity or information omission in the natural language conversation, by which conversation information can be collected with minimum question-answering iterations when necessary.

    参考文献
    相似文献
    引证文献
引用本文

王杉,丁磊,王晓旭.人机对话中自然语言任务命令的识别和计划.计算机系统应用,2022,31(8):395-401

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-01
  • 最后修改日期:2021-12-08
  • 录用日期:
  • 在线发布日期: 2022-05-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号