摘要:近年来在图像描述领域对于应用场景图生成描述的研究越来越广泛. 然而, 当前基于场景图的图像描述模型并未考虑到长短期记忆神经网络(LSTM)对于先前输入的细节信息的保留, 这可能会导致细节信息的丢失. 针对这个问题, 本文提出基于原始信息注入的图像描述网络, 该网络对基线模型中语言LSTM的输入变量做了改进, 目的是尽可能多地保留原始输入信息, 减少输入信息在计算过程中的损失. 另外, 本文还认为当前的场景图更新机制中存在结点更新程度过大的问题, 因此本文设计了一个访问控制模块更新已访问过的结点权重, 避免引起结点信息丢失的问题. 同时, 本文设计一个图更新系数(GUF)来指导图更新, 以确定更新程度的大小. 本文在官方数据集MSCOCO上进行了实验, 各种评估机制的实验结果表明, 基于访问控制模块与原始信息注入的图像描述模型与基线模型对比, 取得了更有竞争力的结果, 表现出明显的优越性.