基于滑动窗口和LSTM自动编码器的渔船作业类型识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61806107)


Fishing Vessel Operation Type Identification Based on Sliding Window and LSTM Auto-encoder
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    过度捕捞和非法捕捞给海洋生态造成严重破坏, 随着船舶自动识别系统(AIS)的发展, 国内外学者基于AIS轨迹数据提出了许多算法进行渔船作业类型识别, 但是这些算法忽视了轨迹的时域特征. 因此, 本文提出了一种基于滑动窗口和LSTM自动编码器的识别算法, 该算法首先使用滑动窗口提取轨迹特征, 再通过LSTM自动编码器去学习轨迹的时域特征和潜在的高级特征, 最后在LSTM自动编码器中嵌入Softmax分类器, 联合优化损失函数, 使分类效果达到最优. 在浙江海域的渔船AIS轨迹数据上进行了实验, 结果表明所提方法的准确率为95.82%, 证明了本方法的有效性和可靠性, 算法可用于辅助拖网、围网作业类型的判断.

    Abstract:

    Overfishing and illegal fishing have caused serious damage to marine ecology. With the development of the automatic identification system (AIS) on vessels, scholars have proposed plenty of algorithms based on AIS trajectory data to identify the operation types of fishing vessels. However, these algorithms ignore the temporal features of the trajectory. Therefore, this study puts forward the identification of operation type based on the sliding window and LSTM auto-encoder. Firstly, it utilizes the sliding window to extract trajectory features and then uses an LSTM auto-encoder to learn the temporal features and potential advanced features of trajectories. Finally, the Softmax classifier is embedded in the LSTM auto-encoder to jointly optimize the cost function, achieving the best classification. The algorithm is verified based on AIS trajectory data of fishing vessels in the Zhejiang sea area, China. The results show that the accuracy is 95.82%, which proves the effectiveness and reliability of the proposed algorithm. The algorithm can be used to assist in judging the operation type of trawl and purse seine.

    参考文献
    相似文献
    引证文献
引用本文

徐文进,董少康.基于滑动窗口和LSTM自动编码器的渔船作业类型识别.计算机系统应用,2022,31(6):287-293

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-16
  • 最后修改日期:2021-10-14
  • 录用日期:
  • 在线发布日期: 2022-05-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号