摘要:为提高变电站设备缺陷的检测精度, 保障变电站运行安全, 提出一种基于改进YOLOv4的缺陷检测算法. 不同于原始YOLOv4, 该算法使用一维卷积替代全连接来优化CBAM卷积注意力模块, 然后将其嵌入主干网络中以增强特征提取能力; 同时, 在特征融合中应用空洞卷积扩大感受野, 聚合更广的语义信息. 该算法在现场拍摄的样本集上进行测试, mAP可达到86.97%, 相比原始YOLOv4提高了2.78%. 实验结果表明, 本文提出的YOLOv4改进算法能够提升网络性能, 更好地应用于变电站设备缺陷检测任务.