基于深度学习的单目标跟踪算法综述
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Survey on Single Object Tracking Algorithms Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    单目标跟踪是计算机视觉领域中的研究热点. 传统算法如相关滤波的跟踪速度较快, 但由于提取到的颜色、灰度等手工特征较为粗糙, 跟踪精度往往不高. 近年来随着深度学习理论的发展, 使用深度特征的跟踪方法能够在跟踪的精度和速度方面达到很好的平衡. 本文首先介绍单目标跟踪的相关背景, 接着从相关滤波单目标跟踪、深度学习单目标跟踪两个阶段对单目标跟踪领域发展过程中涌现出的多个算法进行梳理, 并详细介绍目前主流的孪生网络算法. 最后通过大型数据集对近年来优秀算法进行对比分析, 针对其缺点与不足, 对该领域未来的发展前景做出展望.

    Abstract:

    Single object tracking is a research focus in the field of computer vision. Traditional algorithms including correlation filtering have fast tracking speed but generally low tracking accuracy due to the roughness of extracted manual features such as color and gray levels. With the development of deep learning theory in recent years, tracking methods using deep features can achieve a good balance between tracking accuracy and speed. This study first introduces the relevant background of single object tracking and then sorts out multiple algorithms that have emerged in the development of single object tracking from the two stages of single object tracking based on correlation filters and deep learning. The current mainstream Siamese network algorithms are also introduced in detail. Finally, a large data set is used to compare and analyze the excellent algorithms that have emerged in recent years. In view of the shortcomings and deficiencies of these algorithms, the development prospects of this field are provided in this study.

    参考文献
    相似文献
    引证文献
引用本文

王红涛,邓淼磊,赵文君,张德贤.基于深度学习的单目标跟踪算法综述.计算机系统应用,2022,31(5):40-51

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-02
  • 最后修改日期:2021-08-31
  • 录用日期:
  • 在线发布日期: 2022-02-25
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号