基于两步图谱选择的脑MR图像分割
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

温州市公益性科技计划(G20190022)


Brain MR Image Segmentation Based on Two-stage Atlas Selection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的基于多图谱的医学图像分割过程中的相似度加权融合的方法没有考虑图谱集的干扰性和冗余性的不足, 提出一种基于两步图谱选择策略的脑MR图像分割方法. 该方法首先采用一种基于最小角回归的方法进行图谱粗选择, 其次则采用基于豪斯多夫距离的以目标为导向的图谱精选择. 粗选择方法可以在总体上来寻找和目标图像较为相似的图谱, 删除某些无效变量, 降低图谱集的干扰性和冗余性. 精选择方法更加注重于目标组织本身的相似度计算, 并且得到的相似性结果不受目标组织尺寸和目标组织位置的影响. 实验结果表明, 相比于传统的基于矩形区域相似度计算的单步图谱选择方法, 该方法具有更高的鲁棒性和准确性.

    Abstract:

    Given that the traditional method of similarity weighted fusion in the process of multi-atlas based medical image segmentation does not consider the interference and redundancy of the atlas set, a method of brain magnetic resonance (MR) image segmentation based on a two-stage atlas selection strategy is proposed. In this method, a method based on minimum angle regression is used for rough atlas selection. Then, a method based on the Hausdorff distance is adopted for target-oriented precise atlas selection. The rough selection method can find the atlas similar to the target image on the whole, remove invalid variables, and reduce the interference and redundancy of the atlas set. The precise selection method pays more attention to the similarity calculation of the target tissue, and the similarity results are not affected by the size and location of the target tissue. Experimental results show that the proposed method is more robust and accurate than the traditional one-stage atlas selection method based on similarity calculation of the rectangular region.

    参考文献
    相似文献
    引证文献
引用本文

钱月晶.基于两步图谱选择的脑MR图像分割.计算机系统应用,2022,31(3):203-211

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-23
  • 最后修改日期:2021-06-21
  • 录用日期:
  • 在线发布日期: 2022-01-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号