知识图谱与图嵌入在个性化教育中的应用综述
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(62077014); 湖南省教育厅科学研究项目优秀青年项目(18B037); 湖南省自然科学基金(2020JJ4440); 教育部人文社会科学研究青年基金(18YJCZH124)


Review on Application of Knowledge Mapping and Graph Embedding in Personalized Education
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面对当前日益庞大的教育大数据, 如何在海量数据中高效、准确地提取出高价值的知识, 以满足个性化教学需求, 已成为当前智慧教育的一个研究热点. 作为一种可视化分析技术, 知识图谱可有效构建和挖掘知识及知识间的相互联系, 现已成功应用于诸多领域. 而图嵌入技术的引入, 则有利于提升大数据背景下知识图谱的处理效率. 针对个性化教育的知识处理需求, 首先介绍了知识图谱与图嵌入算法的基本概念, 并从向量平移、基于张量因式分解和基于神经网络等3个方面, 介绍基于三元组的表征学习模型. 然后, 从7种应用类型的角度, 综述知识图谱与图嵌入技术在个性化教育领域中的研究现状. 最后, 总结全文并给出未来的研究展望.

    Abstract:

    At present, big data regarding education are increasingly growing. How to efficiently and accurately extract high-value knowledge from the massive data to meet the personalized education needs of learners or educators is a hot topic worthy of attention in smart education. As a visual analysis technology, knowledge graphs can effectively construct and mine knowledge and the interrelationship between knowledge, which has been successfully applied in many fields. The introduction of graph embedding technology is beneficial to significantly improve the processing efficiency of knowledge graphs in the context of big data. To meet the knowledge processing needs of personalized education, this paper first introduces the basic concepts of knowledge graph and graph embedding algorithms and then expounds the triple-based representation learning model from three aspects: vector translation, tensor-based factorization, and neural network-based representation learning. Then, from the perspective of seven application types, the practical application of knowledge graph and graph embedding in the field of personalized education is reviewed. Finally, the paper is summarized and the directions of future research are discussed.

    参考文献
    相似文献
    引证文献
引用本文

张栩翔,马华.知识图谱与图嵌入在个性化教育中的应用综述.计算机系统应用,2022,31(3):48-55

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-04
  • 最后修改日期:2021-05-28
  • 录用日期:
  • 在线发布日期: 2022-01-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号