基于改进原型网络的P300脑电信号检测
作者:
基金项目:

广东省重点研发计划(2018B030339001); 国家自然科学基金面上项目(62076103); 广州市重点领域研发计划(202007030005); 广东省自然科学基金面上项目(2019A1515011375)


Improved Prototype Network for P300 Signal Detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    从脑电信号中检测P300电位是实现P300脑机接口的关键. 由于不同个体间的脑电信号存在较大差异, 现有的基于深度学习的P300检测方法均需要大量的脑电数据来训练模型. 对于小样本的患者数据, 至今仍没有令人满意的解决方案. 本文提出了一种改进的适用于小样本P300脑电信号检测的原型网络方法. 该模型通过卷积神经网络提取特征, 结合度量方法余弦相似度, 实现P300脑电信号的分类和识别. 在第三届国际脑机接口竞赛的数据集II上进行测试和比较, 取得了平均字符识别率达95%的良好识别性能. 进一步地, 我们把该方法应用于小样本的意识障碍患者意识状态检测中. 在基于命令遵循的意识状态检测实验中, 5位正常人的准确率均为100%, 10位意识障碍患者的意识状态检测结果与临床评估结果相匹配. 研究证明该模型对改进应用于小样本的P300脑机接口系统具有重要意义.

    Abstract:

    Detecting P300 signals from electroencephalograms (EEGs) is the key to the realization of P300 brain-computer interface (BCI) systems. Because EEG signals vary greatly among different individuals, the existing P300 detection methods based on deep learning require plenty of EEG data to train the model, and there is still no satisfactory solution for learning from limited data of patients. In this study, we proposed an improved prototype network for P300 signal detection of samples with a small size, which extracts features with a convolutional neural network (CNN) and utilizes the cosine similarity of the measurement method to classify and recognize P300 signals. This method achieves a good recognition performance with an average character recognition rate of 95% on the data set II of the third BCI competition. Furthermore, we applied this method to diagnose the consciousness of a small number of patients with disorders of consciousness (DOC). Ten patients with DOC and five healthy subjects participated in a command-following experiment. All healthy subjects achieved significant accuracy (100%) and the results of consciousness diagnosis of the DOC patients were consistent with clinical evaluation. Our findings suggest that the model is of great significance to the improvement of P300 BCI systems for limited data.

    参考文献
    [1] Rakotomamonjy A, Guigue V. BCI competition III: Dataset II-ensemble of SVMs for BCI P300 speller. IEEE Transactions on Biomedical Engineering, 2008, 55(3): 1147–1154.
    [2] Bostanov V. BCI competition 2003-data sets Ib and IIb: Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1057–1061.
    [3] Cecotti H, Graser A. Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 433–445.
    [4] Liu MF, Wu W, Gu ZH, et al. Deep learning based on batch normalization for P300 signal detection. Neurocomputing, 2018, 275: 288–297.
    [5] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning. Lille: JMLR.org, 2015. 448–456.
    [6] Jennett B. The vegetative state. Journal of Neurology Neurosurgery & Psychiatry, 2002, 73(4): 355–357.
    [7] Johnson LSM, Lazaridis C. The sources of uncertainty in disorders of consciousness. AJOB Neuroscience, 2018, 9(2): 76–82.
    [8] Plum F, Posner JB. The diagnosis of stupor and coma. Philadelphia: F. A. Davis Co., 1980.
    [9] Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state: Definition and diagnostic criteria. Neurology, 2002, 58(3): 349–353.
    [10] Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: Measurement characteristics and diagnostic utility. Archives of Physical Medicine and Rehabilitation, 2004, 85(12): 2020–2029.
    [11] Schnakers C, Vanhaudenhuyse A, Giacino J, et al. Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment. BMC Neurology, 2009, 9(1): 35
    [12] Gosseries O, Zasler ND, Laureys S. Recent advances in disorders of consciousness: Focus on the diagnosis. Brain Injury, 2014, 28(9): 1141–1150.
    [13] van Erp WS, Lavrijsen JCM, van de Laar FA, et al. The vegetative state/unresponsive wakefulness syndrome: A systematic review of prevalence studies. European Journal of Neurology, 2014, 21(11): 1361–1368.
    [14] Pan JH, Xie QY, Qin PM, et al. Prognosis for patients with cognitive motor dissociation identified by brain-computer interface. Brain, 2020, 143(4): 1177–1189.
    [15] Lake BM, Salakhutdinov R, Tenenbaum JB. Human-level concept learning through probabilistic program induction. Science, 2015, 350(6266): 1332–1338.
    [16] Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning. Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016. 3637–3645.
    [17] Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 4080–4090.
    [18] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
    [19] Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv: 1412.6980v5, 2014.
    [20] Homan RW, Herman J, Purdy P. Cerebral location of international 10–20 system electrode placement. Electroencephalography and clinical neurophysiology, 1987, 66(4): 376–382.
    [21] 肖郴杰. 基于深度学习的P300脑机接口分类算法研究[硕士学位论文]. 广州: 华南理工大学, 2019.
    [22] Kübler A, Birbaumer N. Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients?. Clinical Neurophysiology, 2008, 119(11): 2658–2666.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

施翔宇,潘家辉.基于改进原型网络的P300脑电信号检测.计算机系统应用,2022,31(3):30-37

复制
相关视频

分享
文章指标
  • 点击次数:1078
  • 下载次数: 20548
  • HTML阅读次数: 2543
  • 引用次数: 0
历史
  • 收稿日期:2021-05-17
  • 最后修改日期:2021-06-14
  • 在线发布日期: 2022-01-24
文章二维码
您是第12799980位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号