基于控制输入长短期记忆网络的关系抽取方法——
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省自然科学基金(2019JQ-849); 柯桥纺织产业创新项目(19KQYB23); 西安工程大学研究生创新基金(chx2021028)


Relation Extraction Method Based on Control Input Long Short-term Memory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前基于传统深度学习的关系抽取方法在复杂语境下抽取较为困难, 且未考虑语境中非目标关系对关系抽取所带来的影响. 针对这一问题, 本文提出了控制输入长短期记忆网络CI-LSTM (control input long short-term memory), 该网络在传统LSTM的基础上增加了由注意力机制和控制门阀单元组成的输入控制单元, 控制门阀单元可依据控制向量进行关键位置上的重点学习, 注意力机制对单个LSTM的输入的不同特征进行计算. 本文通过实验最终选择使用句法依存关系生成控制向量并构建关系抽取模型, 同时使用SemEval-2010 Task8关系数据集以及该数据集中具有复杂语境的样本对所提方法进行实验. 结果表明, 相比于传统的关系抽取方法, 本文所提CI-LSTM在准确率上有进一步提升, 并在复杂语境中具有更好的表现.

    Abstract:

    At present, traditional deep learning-based relation extraction methods are unable to extract relations in complex contexts and fail to consider the impact of non-target relations in a context on relation extraction. In response, this paper proposes a control input long short-term memory (CI-LSTM) network that adds an input control unit composed of an attention mechanism and a control gate valve unit to the traditional LSTM network. The control gate valve unit can perform focused learning on key positions according to the control vector, and the attention mechanism calculates the different features of the inputs of a single LSTM network. After experiments, this paper finally chooses to use syntactic dependency to generate control vectors and build a relation extraction model. An experiment is then conducted on the SemEval-2010 Task8 relation data set and the samples in the data set with complex contexts. The results show that compared with the traditional relation extraction method, the CI-LSTM network proposed in this paper achieves further improvement in accuracy and better performance in complex contexts.

    参考文献
    相似文献
    引证文献
引用本文

马瑛超,张晓滨.基于控制输入长短期记忆网络的关系抽取方法——.计算机系统应用,2022,31(3):282-287

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-28
  • 最后修改日期:2021-05-28
  • 录用日期:
  • 在线发布日期: 2022-01-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号