省域房产大数据热力图人工智能预测系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省应用型科技研发专项资金重点项目(2015B010131012);广东省自然科学基金(2018A0303130022)


Artificial Intelligence Prediction System of Big Data Heat Map for Provincial Realty
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    省域范围房产交易与登记大数据可视化呈现的建模分析预测对于研究我国城乡建设、区划经济的布局趋势, 呈现城镇建设发展指标的时空演化, 辅助支持科学决策、宏观调控等具有重要意义. 考虑到这些经济活动数据的预测建模涉及到尚无明确数学表达的、因素作用复杂的事物状态演变过程, 受近代人工智能深度神经网络技术在类似复杂场景成功应用的启发, 我们采用相关的长短时记忆网络模型(LSTM)与全连接层(FC)技术等AI技术, 建立起宏观可视化的省域房产大数据热力图预测系统. 本文的主要系统建设实践是, 利用所获的广东省域(东沙群岛除外)历年积累的房产法定业务大数据, 基于各市房屋建成年份时序, 实现对区域房产套数和面积等基本指标的年末地理热力图建模预测功能. 本文创造性提出“网格累计量预测+市域增量预测修正”的总体预测建模计算框架, 为省域房地产大数据人工智能建模预测增加了网格粒度调选和局部结合全局预测修正的调优途径, 提高了预测模型的适用性. 应用分析表明, 建模预测系统的计算结果具有较高的合理性和实用性.

    Abstract:

    The analysis and prediction modeling for the visual presentation of provincial big data concerning realty transaction and registration is of great significance for studying the layout trend of China’s urban-rural construction and regional economy. It shows the temporal and spatial evolution of urban construction and development indicators and supports scientific decision-making and macro-control. The prediction modeling of these economic activity data involves the understanding of the state evolution of things with complex factors and without clear mathematical expression. Thus, inspired by the successful applications of modern artificial intelligence-deep neural network technology in similar complex scenes, we intend to establish a macro visual prediction system of heat maps of provincial realty big data by related long short-term memory (LSTM) model and fully connected layer (FC) technology. The main system construction practice of this paper is that we utilize the big data from the legal business of realty which are accumulated in Guangdong Province (not including Dongsha Islands) over the years to implement the functions of modeling and predicting regional year-end geographic heat maps of two basic indicators, i.e., the number and the total area of existing realty units, regarding the temporal years when the realty was built in each city. This study creatively puts forward the overall prediction modeling and calculation framework of “grid cumulative prediction + incremental prediction correction for a city”. It increases the optimization options of grid granularity adjustment and local-global prediction correction for the artificial intelligence modeling and prediction of provincial realty big data and improves the applicability of the prediction model. Application analyses show that the calculation results of the modeling prediction system are reasonable and practical.

    参考文献
    相似文献
    引证文献
引用本文

杨海涛,孙庆辉,吕建明,阮镇江,夏兰亭,徐飞.省域房产大数据热力图人工智能预测系统.计算机系统应用,2022,31(2):57-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-02
  • 最后修改日期:2021-05-31
  • 录用日期:
  • 在线发布日期: 2022-01-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号