基于特征嵌入的学生知识点熟练度预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国博士后科学基金(2017M611905);江苏高校优势学科建设工程(PAPD)


Prediction of Student’s Knowledge Proficiency Based on Feature Embedding
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    学生知识点熟练度是教师为学生制定学习计划的重要依据.为解决认知诊断中无法概率化学生知识点熟练度的问题,提出了将知识点作为特征嵌入的预测方法.该方法分别对学生和试题建立知识点向量,并且构造卷积神经网络进行监督学习,根据学生的答题情况不断调整他们的知识点熟练度.实验结果与现有的方法进行对比,验证了该方法的准确率的确有所提升.

    Abstract:

    The proficiency of students’ knowledge points is an important basis for teachers to make learning plans. To tackle the problem that the students’ proficiency for knowledge points cannot be described in a probabilistic way in cognitive diagnosis, this study proposes a prediction method of embedding knowledge points as features. This method establishes knowledge point vectors for students and test questions respectively and constructs a convolutional neural network for supervised learning to adjust students’ proficiency for knowledge points according to their answering records. Compared with existing related methods, the proposed method greatly improves the accuracy.

    参考文献
    相似文献
    引证文献
引用本文

史浩杰,李幸,贾俊铖,匡健,章红.基于特征嵌入的学生知识点熟练度预测.计算机系统应用,2022,31(1):332-337

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-17
  • 最后修改日期:2021-04-09
  • 录用日期:
  • 在线发布日期: 2021-12-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号