基于多尺度卷积网络的司机嘴部异常检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

安徽省2019年重点研究与开发计划(201904a05020035)


Driver’s Mouth Anomaly Detection Based on Multiscale Convolutional Auto-Encoder
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    司机的异常驾驶行为会引发交通事故从而威胁司机、乘客及他人的生命安全, 因此检测司机的异常驾驶行为可以有效保障人们的出行安全. 在实际驾驶过程中, 发生在司机嘴部区域的异常行为复杂多样, 因此本文提出一种无监督检测算法来检测嘴部区域的异常行为. 算法首先使用人脸关键点检测网络获取嘴部异常高发区域; 之后通过改进后的Convolutional Auto-Encoder (CAE)算法重构嘴部区域图片并计算重构误差以此来判断是否发生异常. 包括以下3点改进: 加入skip connect结构用来更好地重构输入图片; 加入Inception结构并调整优化分支通道比例, 用来更好的拟合输入图片特征; 在训练时加入高斯白噪声进一步提高模型检测的鲁棒性. 实验结果表明: 本文提出的算法框架与传统CAE算法相比, AUC从0.682提高到0.938, 并且能够在嵌入式系统上运行.

    Abstract:

    Abnormal driving behaviors of drivers pose a high risk of traffic accidents, threatening the life safety of drivers, passengers, and others. Thus, detecting the abnormal driving behaviors of drivers is of great significance for ensuring people’s travel safety. In an actual driving process, abnormal behaviors in the driver’s mouth region are complex and diverse. In view of this, this study proposes an unsupervised detection algorithm for the abnormal behaviors in the mouth region. The algorithm first uses the facial landmark detection network to obtain the mouth area with a high probability of anomaly. Then, the mouth area image is rebuilt with the improved Convolutional Auto-Encoder (CAE) algorithm. Abnormal behaviors are determined by the computation of the reconstruction error. The proposed algorithm is improved in three aspects: (1) the introduction of the skip connection structure to better reconstruct the input image; (2) the introduction of the Inception structure and the optimization of the proportions of branch channels to better fit the features of the input image; (3) the addition of Gaussian white noise in the training process to improve the robustness of model detection. The experimental results show that the AUC of the proposed algorithm framework is improved from 0.682 to 0.938 as compared with the traditional CAE algorithm and it can run on embedded systems.

    参考文献
    相似文献
    引证文献
引用本文

寿博,朱明.基于多尺度卷积网络的司机嘴部异常检测.计算机系统应用,2021,30(11):224-230

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-30
  • 最后修改日期:2021-02-26
  • 录用日期:
  • 在线发布日期: 2021-10-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号