遥感影像中建筑物的Unet分割改进
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Segmentation of Buildings in Remote Sensing Images by Improved Unet Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对经典Unet算法在提取遥感影像中建筑物特征时存在编码信息丢失、对多尺度建筑目标适应性差和上下文特征联系不足的问题, 本研究提出了一种多尺度融合的变形残差金字塔编解码网络. 首先, 引入深度编码网络与下采样旁路网络替换原编码结构, 共同完成对建筑物目标高阶特征信息的提取; 其次, 在编码网络次末端节点引入联合变形卷积的残差金字塔结构, 以提升网络对建筑物多尺度特征和边缘模糊特征的辨识能力; 最后, 将高阶和低阶特征逐层级联融合, 在解码网络末端获取对建筑物的分割结果. 实验结果表明, 改进后模型相比原模型在F1-scoreMIOU指标上分别提升了1.6%和2.1%.

    Abstract:

    The loss of coding information, the poor adaptability to multi-scale building targets, and the insufficient contextual feature connection can be found in the classic Unet algorithm during the extraction of building features from remote sensing images. To tackle these problems, this study proposes a deformed-residual-pyramid codec network with multi-scale fusion. First, the original coding structure is replaced by the deep coding network and the down-sampling bypass network, which jointly extract the high-level feature information of the building target. Second, the residual pyramid structure combined with deformed convolution is introduced at the penultimate node of the coding network to improve the network’s ability to recognize multi-scale features and edge fuzzy features of buildings. Finally, the high- and low-level features are cascaded and merged layer by layer, and the segmentation result of the building is obtained at the end of the decoding network. The experimental results show that compared with the original model, the improved model has increased F1-score and MIoU by 1.6% and 2.1%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

黄杰,蒋丰.遥感影像中建筑物的Unet分割改进.计算机系统应用,2021,30(10):319-324

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-05
  • 最后修改日期:2021-02-03
  • 录用日期:
  • 在线发布日期: 2021-10-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号