基于XGBOOST-DNN的中期电力负荷预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Mid-Term Power Load Forecasting Based on XGBoost-DNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精准的负荷预测是电力工作者重要的工作之一, 而负荷预测以预测周期的不同, 一般可以划分为短期电力负荷预测与中长期电力负荷预测. 其中中长期电力负荷预测相较短期电力负荷预测而言, 该领域缺乏大量前沿工作者的探索. 因此本文提出一种可应用于中期电力负荷预测领域且基于XGBoost-DNN的算法. 该算法将树模型和深度神经网络相结合, 并将短期电力负荷预测引入到了中期电力负荷预测的工作中, 基于树模型自身特点, 将数据特征加工成高阶的交叉特征, 同时结合原有数据利用深度神经网络可学习到丰富的特征信息. 这里是以2017全球能源预测竞赛的数据进行算法分析, 其中实验表明, 在中期电力负荷预测领域, 该方法提出的XGBoost-DNN模型相较于DNN, LSTM而言, 其具备更加精准的准确性.

    Abstract:

    Accurate load forecasting is one of the important tasks for power workers, and power load forecasting can be generally divided into short-term forecasting and medium- and long-term forecasting depending on the forecasting period. Compared with short-term power load forecasting, medium- and long-term forecasting is little explored by cutting-edge workers. Therefore, this study proposes an XGBoost-DNN-based algorithm that can be applied to mid-term power load forecasting. The algorithm combines the tree model with the deep neural network and introduces short-term forecasting into mid-term forecasting. According to the characteristics of the tree model, the data features are processed into high-order cross features, and in combination with the original data, the deep neural network is used to learn rich feature information. Algorithm analysis with the data of the 2017 Global Energy Forecasting Competition shows that in mid-term power load forecasting, the XGBoost-DNN model proposed by this method is more accurate than DNN and LSTM.

    参考文献
    相似文献
    引证文献
引用本文

杨洋,谷震浩.基于XGBOOST-DNN的中期电力负荷预测.计算机系统应用,2021,30(9):186-191

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-15
  • 最后修改日期:2021-01-11
  • 录用日期:
  • 在线发布日期: 2021-09-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号