基于CNN-LSTM的多因素时空风速预测
作者:
基金项目:

科技部创新方法工作专项(2015IM010300)


Multifactor Spatio-Temporal Wind Speed Prediction Based on CNN-LSTM
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    准确的风速预测在风能转换和电力分配中起着至关重要的作用. 但是, 风的固有间歇性使其难以实现高精度的预测. 现有研究方法大都考虑了风速的时间相关性, 但忽略了气象因素随空间变化对风速的影响. 为获得准确可靠的预测结果, 结合卷积神经网络和长短期记忆网络, 提出了一种多因素时空风速预测相关(MFSTC)模型. 同时, 还构建了一种基于三维矩阵的数据表示方法. 针对多个站点, 利用改进的PCA-LASSO算法提取特征气象要素, 然后, 采用卷积神经网络建立各个站点之间的空间特征关系, 采用长短期记忆网络建立历史时间点之间的时间特征关系, 在时空相关性分析的基础上得到最终风速预测结果. 在东营气象中心提供的2009–2018共10年的实测风速数据集上进行了实验验证. 结果表明, 相比于一般预测方法, 由MFSTC模型获得的实验结果更加准确, 证明了提出方法的有效性.

    Abstract:

    The accurate prediction of wind speed plays a vital role in the transformation of wind energy and the dispatching of electricity. However, the inherent intermittence of wind makes it a challenge to achieve high-precision wind speed prediction. Most studies consider the temporal correlation of wind speed but ignore the influence of meteorological factors with changes in space on wind speed. To obtain accurate and reliable forecasting results, this study proposes a MultiFactor Spatio-Temporal Correlation (MFSTC) model for wind speed prediction by combining a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) network. This paper also constructs a data representation method based on a three-dimensional matrix. For multiple sites, this model employs the improved PCA-LASSO algorithm to extract the characteristic meteorological factors. Then, it uses CNN to establish the spatial feature relationship among the sites and the LSTM network to establish the temporal feature relationship among historical time points. The final wind speed prediction results are obtained based on spatio-temporal correlation analysis. Furthermore, experimental verification is carried out on the 10 years of actual wind speed datasets from 2009 to 2018 provided by Dongying Meteorological Center. The results show that the MFSTC model is more accurate than common prediction methods, which proves the effectiveness of the proposed method.

    参考文献
    [1] 赵建利, 白格平, 李英俊, 等. 基于CNN-LSTM的短期风电功率预测. 自动化仪表, 2020, 41(5):37-41
    [2] Du P, Wang JZ, Guo ZH, et al. Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting. Energy Conversion and Management, 2017, 150:90-107.[doi:10.1016/j.enconman.2017.07.065
    [3] Liu H, Duan Z, Han FZ, et al. Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm. Energy Conversion and Management, 2018, 156:525-541.[doi:10.1016/j.enconman.2017.11.049
    [4] Billinton R, Chen H, Ghajar R. A sequential simulation technique for adequacy evaluation of generating systems including wind energy. IEEE Transactions on Energy Conversion, 1996, 11(4):728-734.[doi:10.1109/60.556371
    [5] Jiang Y, Chen XY, Yu K, et al. Short-term wind power forecasting using hybrid method based on enhanced boosting algorithm. Journal of Modern Power Systems and Clean Energy, 2017, 5(1):126-133.[doi:10.1007/s40565-015-0171-6
    [6] Bossanyi EA. Short-term wind prediction using Kalman filters. Wind Engineering, 1985, 9(1):1-8
    [7] Yuan XH, Chen C, Yuan YB, et al. Short-term wind power prediction based on LSSVM-GSA model. Energy Conversion and Management, 2015, 101:393-401.[doi:10.1016/j.enconman.2015.05.065
    [8] Li S, Wang P, Goel L. Wind power forecasting using neural network ensembles with feature selection. IEEE Transactions on Sustainable Energy, 2015, 6(4):1447-1456.[doi:10.1109/TSTE.2015.2441747
    [9] Liu H, Mi XW, Li YF. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Conversion and Management, 2018, 159:54-64.[doi:10.1016/j.enconman.2018.01.010
    [10] Wang HZ, Li GQ, Wang GB, et al. Deep learning based ensemble approach for probabilistic wind power forecasting. Applied Energy, 2017, 188:56-70.[doi:10.1016/j.apenergy.2016.11.111
    [11] Ghaderi A, Sanandaji BM, Ghaderi F. Deep forecast:Deep learning-based spatio-temporal forecasting. arXiv preprint arXiv:1707.08110, 2017.
    [12] Hu QH, Zhang RJ, Zhou YC. Transfer learning for short-term wind speed prediction with deep neural networks. Renewable Energy, 2016, 85:83-95.[doi:10.1016/j.renene.2015.06.034
    [13] Zaytar MA, El Amrani C. Sequence to sequence weather forecasting with long short-term memory recurrent neural networks. International Journal of Computer Applications, 2016, 143(11):7-11.[doi:10.5120/ijca2016910497
    [14] Wang HZ, Wang GB, Li GQ, et al. Deep belief network based deterministic and probabilistic wind speed forecasting approach. Applied Energy, 2016, 182:80-93.[doi:10.1016/j.apenergy.2016.08.108
    [15] Zhao Z, Chen WH, Wu XM, et al. LSTM network:A deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems, 2017, 11(2):68-75.[doi:10.1049/iet-its.2016.0208
    [16] Sanandaji BM, Tascikaraoglu A, Poolla K, et al. Low-dimensional models in spatio-temporal wind speed forecasting. Proceedings of 2015 American Control Conference. Chicago, IL, USA. 2015. 4485-90.
    [17] Hill DC, McMillan D, Bell KRW, et al. Application of auto-regressive models to U. K. wind speed data for power system impact studies. IEEE Transactions on Sustainable Energy, 2012, 3(1):134-141
    [18] Zhao YN, Ye L, Pinson P, et al. Correlation -constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting. IEEE Transactions on Power Systems, 2018, 33(5):5029-5040.[doi:10.1109/TPWRS.2018.2794450
    [19] 孙全德, 焦瑞莉, 夏江江, 等. 基于机器学习的数值天气预报风速订正研究. 气象, 2019, 45(3):426-436.[doi:10.7519/j.issn.1000-0526.2019.03.012
    [20] Westerhuis JA, Kourti T, MacGregor JF. Analysis of multiblock and hierarchical PCA and PLS models. Journal of Chemometrics, 1998, 12(5):301-321.[doi:10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S
    [21] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:Series B(Methodological), 1996, 58(1):267-288.[doi:10.1111/j.2517-6161.1996.tb02080.x
    [22] 宋海峰, 杨巍巍. 基于Multi-CNN空间特征提取的高光谱遥感影像分类. 测绘工程, 2019, 28(6):10-16
    [23] Ji SW, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231.[doi:10.1109/TPAMI.2012.59
    [24] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel. 2010.807-814.
    [25] 白玉洁. 改进时间序列模型在降雨量预测中的应用研究. 计算机仿真, 2011, 28(10):141-145.[doi:10.3969/j.issn.1006-9348.2011.10.035
    [26] Lorenz EN. Deterministic nonperiodic flow. In:Hunt BR, Li TY, Kennedy JA, et al. The Theory of Chaotic Attractors. New York:Springer, 2004:25-36.
    [27] Yao WY, Huang P, Jia ZX. Multidimensional LSTM networks to predict wind speed. Proceedings of the 37th Chinese Control Conference. Wuhan, China. 2018. 7493-7497.
    [28] Bengio Y, Frasconi P, Simard P. The problem of learning long-term dependencies in recurrent networks. IEEE International Conference on Neural Networks. San Francisco, CA, USA. 1993. 1183-1188.
    [29] Guo T, Liu R, Yang H, et al. Predict atmosphere electric field value with the LSTM neural network. 2017 International Conference on Computer Systems, Electronics and Control. Dalian, China. 2017. 263-266.
    [30] Ma XL, Tao ZM, Wang YH, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C:Emerging Technologies, 2015, 54:187-197.[doi:10.1016/j.trc.2015.03.014
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁咪咪,宫法明,李昕.基于CNN-LSTM的多因素时空风速预测.计算机系统应用,2021,30(8):133-141

复制
分享
文章指标
  • 点击次数:1363
  • 下载次数: 2969
  • HTML阅读次数: 6778
  • 引用次数: 0
历史
  • 收稿日期:2020-11-12
  • 最后修改日期:2020-12-21
  • 在线发布日期: 2021-08-03
文章二维码
您是第12822711位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号