基于谱回归特征降维的客户流失预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广西重点研发计划(2018AB15003); 广西多源信息挖掘与安全重点实验室开放基金(MIMS17-02); 广西高校中青年教师基础能力提升项目(2018KY0520); 2019年度广西高校中青年教师科研基础能力提升项目(2019KY0661); 广西财经学院青年教师科研发展基金(2018QNA02)


Prediction of Customer Churn Based on Spectral Regression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对于大样本数据的客户流失预测, 从特征有效表达的角度, 提出了一种基于谱回归特征约简的预测模型. 模型在原始客户特征基础上, 利用基于谱回归的流形降维, 建立可区分性的低维特征空间, 在此之上采用支持向量机实现客户流失的二分类. 通过在网络客户和传统电信客户两种不同数据集上的大样本实验, 并与不同分类器、不同特征约简或选择方法的对比, 证明了该方法的有效性.

    Abstract:

    In order to predict customer churn with large sample data, a customer churn prediction model based on spectral regression was put forward from the perspective of feature expression, which took advantage of the spectral regression to reduce the dimension of feature. On the basis of the original customer features, a distinguishing feature space of low dimension is established by using the manifold dimension reduction based on spectral regression, and then we used the support vector machine to realize the binary classification of customer churn prediction. The model was evaluated on two different data sets of network customers and traditional telecom customers, and compared with different classifiers, different feature reduction or selection methods, the experiment results verify that the model is effective.

    参考文献
    相似文献
    引证文献
引用本文

李国祥,蒋怡琳,马文斌,夏国恩.基于谱回归特征降维的客户流失预测.计算机系统应用,2021,30(9):62-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-25
  • 最后修改日期:2020-11-23
  • 录用日期:
  • 在线发布日期: 2021-09-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号