摘要:路侧感知算法融合车载感知算法实现了超视距感知, 基于深度学习的感知算法性能取决于激光雷达点云标签标注的质量, 而点云标签相对于二维图像更难标注, 需要大量时间人力成本进行标注, 且现行感知算法都是针对于车载激光雷达. 针对这些问题, 本文提出了一种基于路侧激光雷达栅格特征聚类的感知算法, 该算法首先对路侧激光雷达点云栅格化并提取特征, 再构建深度学习方法模型学习栅格的初级感知信息, 最后根据初级感知信息进行聚类完成感知检测. 本文还利用仿真平台模拟路侧激光雷达点云, 并研究混合数据集在感知算法训练上的应用, 基于模拟数据预训模型微调(Fine-tune)在感知算法上的应用. 实验结果表明, 本文提出的路侧感知算法具有较高的实时性与可靠性, 模拟路侧激光雷达点云有助于路侧感知算法训练, 减少路侧感知算法对标注工作的依赖, 提高感知算法性能.