融合深度学习与集成学习的用户离网预测
作者:
基金项目:

浙江省自然科学基金(LY20F020030)


Churn Prediction Based on Fusion of Deep Learning and Ensemble Learning
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着国内通信市场逐渐饱和, 电信运营商之间的竞争日趋激烈. 用户流失预测已成为电信运营商最关注的问题之一. 本文提出一种基于多模型融合的方法创建用户离网预测模型. 首先, 将原始训练数据经过有放回采样和正负样本平衡得到多份不同的训练数据; 然后, 利用多份不同的训练数据使用集成学习与深度学习算法训练得到多个基础模型; 最终, 将多个基础模型进行融合形成高层模型. 实验结果表明, 融合模型在各类用户测试集上的表现均优于基础模型, 具有实际生产应用价值.

    Abstract:

    As the China’s communication market has been saturated over time, the competition among telecom operators is becoming increasingly fierce. Churn prediction of customers has turned into one of the most concerns for telecom operators. This study proposes a method based on multi-model fusion to create a churn prediction model of customers. First, through bootstrap sampling and positive-negative sample balancing, multiple training datasets are obtained from the original training data. Then, base models are trained by these datasets with ensemble learning and deep learning algorithms. Finally, the base models are merged into a high-level model. The experimental results prove that the fusion model performs better than all base models in the test datasets, with a practical value for production.

    参考文献
    [1] De Caigny A, Coussement K, De Bock KW. A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 2018, 269(2): 760–772. [doi: 10.1016/j.ejor.2018.02.009
    [2] Su Q, Shao PJ, Ye QF. The analysis on the determinants of mobile VIP customer churn: A logistic regression approach. International Journal of Services Technology and Management, 2012, 18(1–2): 61–74
    [3] Kisioglu P, Topcu YI. Applying Bayesian belief network approach to customer churn analysis: A case study on the telecom industry of Turkey. Expert Systems with Applications, 2011, 38(6): 7151–7157. [doi: 10.1016/j.eswa.2010.12.045
    [4] Verbraken T, Verbeke W, Baesens B. Profit optimizing customer churn prediction with Bayesian network classifiers. Intelligent Data Analysis, 2014, 18(1): 3–24. [doi: 10.3233/IDA-130625
    [5] Sharma A, Panigrahi PK. A neural network based approach for predicting customer churn in cellular network services. International Journal of Computer Applications, 2011, 27(11): 26–31. [doi: 10.5120/3344-4605
    [6] 卢光跃, 王航龙, 李创创, 等. 基于改进的K近邻和支持向量机客户流失预测. 西安邮电大学学报, 2018, 23(2): 1–6
    [7] Idris A, Rizwan M, Khan A. Churn prediction in telecom using random forest and PSO based data balancing in combination with various feature selection strategies. Computers & Electrical Engineering, 2012, 38(6): 1808–1819
    [8] Ahmed AAQ, Maheswari D. An enhanced ensemble classifier for telecom churn prediction using cost based uplift modelling. International Journal of Information Technology, 2019, 11(2): 381–391. [doi: 10.1007/s41870-018-0248-3
    [9] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述. 计算机学报, 2018, 41(7): 1619–1647. [doi: 10.11897/SP.J.1016.2018.01619
    [10] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France. 2015. 448–456.
    [11] Chen TQ, Guestrin C. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA. 2016. 785–794.
    [12] Ke GL, Meng Q, Finley T, et al. LightGBM: A highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems. Los Angeles, CA, USA. 2017. 3149–3157.
    [13] Dorogush AV, Ershov V, Gulin A. CatBoost: Gradient boosting with categorical features support. arXiv: 1810.11363v1, 2018.
    [14] Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: Unbiased boosting with categorical features. Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, QC, Canada. 2018. 6639–6649.
    [15] McHugh ML. The Chi-square test of independence. Biochemia Medica, 2013, 23(2): 143–149
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梁晓,洪榛.融合深度学习与集成学习的用户离网预测.计算机系统应用,2021,30(6):28-36

复制
分享
文章指标
  • 点击次数:1163
  • 下载次数: 2623
  • HTML阅读次数: 2201
  • 引用次数: 0
历史
  • 收稿日期:2020-10-09
  • 最后修改日期:2020-11-16
  • 在线发布日期: 2021-06-05
文章二维码
您是第11126037位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号