Abstract:Image enhancement algorithm mainly process the captured images to enhance the overall effect or local details, increasing the overall and partial contrast while suppressing unwanted details. As a result, the quality of the images is improved, conforming to the visual perception of the human eye. Firstly, according to the basic principles of image enhancement algorithms, this study analyzes those based on histogram equalization, wavelet transform, partial differential equations, fractional-order differential equations, the Retinex theory and deep learning, and their improved algorithms. Then, the qualitative and quantitative comparisons between image enhancement algorithms are carried out with regard to visual effect, contrast, and information entropy to indentify the advantages and disadvantages of them. Finally, the future development trend of image enhancement algorithms is briefly predicted.