基于3D双流卷积神经网络的异常行为检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省自然科学基金面上项目(2019A1515011375); 广州市科技计划重点领域研发计划(202007030005); 国家自然科学基金面上项目(61876067)


Two-Stream Inflated 3D CNN for Abnormal Behavior Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着科技的不断发展, 越来越多的人工智能技术应用于社会生活. 依据这一现实, 本文运用当前较为热门的图像处理技术进行能识别视频中异常行为并给出预测值的系统开发. 首先, 我们利用双流膨胀3D卷积网络(Two-Stream-I3D)特征提取技术对视频进行特征提取. 其次, 运用Python对特征进行处理, 转化为深度学习网络所能识别的特征, 最后进行GRNN广义回归网络训练, 最终达到能对特征值进行良好的异常概率回归的效果. 实验表明, 运用本系统针对测试集近50例的视频的检测下, 系统的平均准确率达74%, 具有良好的性能.

    Abstract:

    Amid the continuous progress in technology, artificial intelligence technologies have been widely applied to the social life. This study develops a system that can identify abnormal behaviors in videos with predictive values. Firstly, we employ a Two-Stream Inflated3D (Two-Stream-I3D) convolutional neural network to extract features from the video. Secondly, we rely on Python to transform the features into those that can be recognized by a deep learning network. Finally, we perform GRNN training for abnormal probability regression. Experimental results show that the system can achieve the average accuracy of nearly 74% for abnormal behavior recognition during the detection of nearly 50 cases.

    参考文献
    相似文献
    引证文献
引用本文

刘良鑫,林勉芬,钟良泉,彭雯雯,曲超,潘家辉.基于3D双流卷积神经网络的异常行为检测.计算机系统应用,2021,30(5):120-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-21
  • 最后修改日期:2020-10-13
  • 录用日期:
  • 在线发布日期: 2021-05-06
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号