课程评价中考虑误导抑制的关联规则高效提取
作者:
基金项目:

山西省软科学项目(2019041010-2); 山西省高等学校教学改革创新项目(J2019133, J2020500)


Efficient Association Rules Extraction by Considering Misleading Suppression in Course Evaluation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对高校课程评价, 研究数据驱动的教学管理与决策问题. 由某校的课程评价指标体系, 确定涵盖学生、教师、同行专家和教学督导等多维度评价数据的数据结构. 对采集的调查问卷数据进行清洗和转换等预处理后, 构造完成供数据挖掘的数据集. 考虑误导性规则抑制, 使用基于差异兴趣度的改进Apriori关联规则挖掘算法, 提取评价指标间的关联规则. 将发现的关系模式与使用传统Apriori关联规则挖掘算法所得结果进行比较, 显示本文所用改进Apriori方法能够提高知识发现的效率和准确性, 对课程建设具有更强的指导作用.

    Abstract:

    For the curriculum evaluation in colleges and universities, data-driven teaching management and decision-making issues are investigated in this study. First, the index system of curriculum evaluation from a school determines the data structure of multi-dimensional evaluation data covering students, teachers, peer experts, and teaching supervisors. After clean and conversion of the collected questionnaire data, a data set for data mining is constructed. Then, considering misleading suppression, we apply the improved Apriori association rule mining algorithm based on varying interest degrees to extracting the association rules between the evaluation indices. Finally, a comparison of the discovered relational patterns with the results using the traditional Apriori algorithm shows that the improved Apriori method used in this study can increase the efficiency and accuracy of knowledge discovery and has a prominent guiding role in curriculum construction.

    参考文献
    [1] 吴岩. 一流本科一流专业一流人才. 中国大学教学, 2017, (11): 4-12, 17. [doi: 10.3969/j.issn.1005-0450.2017.11.002
    [2] 陈翔, 韩响玲, 王洋, 等. 课程教学质量评价体系重构与“金课”建设. 中国大学教学, 2019, (5): 43-48. [doi: 10.3969/j.issn.1005-0450.2019.05.010
    [3] 陈国青, 曾大军, 卫强, 等. 大数据环境下的决策范式转变与使能创新. 管理世界, 2020, 36(2): 95-105. [doi: 10.3969/j.issn.1002-5502.2020.02.009
    [4] 许晓东, 陈金江. 国家精品课程评审指标修订及其启示. 中国高等教育, 2010, (7): 38-39, 47
    [5] 任高举, 白亚男. 关联规则挖掘在高校教学评价中的应用. 计算机与数字工程, 2014, 42(8): 1526-1529. [doi: 10.3969/j.issn1672-9722.2014.08.051
    [6] 郭鹏, 蔡骋. 基于聚类和关联算法的学生成绩挖掘与分析. 计算机工程与应用, 2019, 55(17): 169-179. [doi: 10.3778/j.issn.1002-8331.1902-0223
    [7] 李广璞, 黄妙华. 频繁项集挖掘的研究进展及主流方法. 计算机科学, 2018, 45(S2): 1-11, 26
    [8] 王桌芳, 赵会军, 李聪, 等. 基于兴趣度度量的多类差异数据关联规则挖掘. 计算机应用与软件, 2019, 36(12): 60-65, 105. [doi: 10.3969/j.issn.1000-386x.2019.12.010
    [9] 谢雨婷. 基于学生成绩的课程关联性和学生综合素质评价研究[硕士学位论文]. 武汉: 华中师范大学, 2019.
    [10] 郑丽生. Apriori改进算法在教学评价中的应用[硕士学位论文]. 泉州: 华侨大学, 2015.
    [11] 周皓峰, 朱扬勇, 施伯乐. 一个基于兴趣度的关联规则采掘算法. 计算机研究与发展, 2002, 39(4): 450-457
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张利生,薛颂东,杨晓梅.课程评价中考虑误导抑制的关联规则高效提取.计算机系统应用,2021,30(5):164-169

复制
分享
文章指标
  • 点击次数:784
  • 下载次数: 1755
  • HTML阅读次数: 1283
  • 引用次数: 0
历史
  • 收稿日期:2020-09-02
  • 最后修改日期:2020-09-25
  • 在线发布日期: 2021-05-06
文章二维码
您是第12820687位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号