耦合强度对量子绝热算法求解最大割的影响
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Influence of Coupling Strength on Quantum Adiabatic Algorithm for Solving Max-Cut
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文分析基于量子绝热近似的不同顶点的最大割问题求解. 该算法将无向图的顶点等效为量子比特, 各个顶点间的边等效为两个量子比特之间的耦合, 边的权重值等效为量子比特间的耦合强度. 采用Python语言编写算法程序, 模拟了6–13个顶点的完全无向图的最大割问题求解情况. 实验结果表明, 当完全无向图顶点个数取为8, 12, 13, 同时耦合强度为1.0时, 所求解最大割问题哈密顿量的期望值不收敛. 进一步调整模拟计算中量子比特间耦合强度数值, 观察期望值变化. 实验发现, 对于顶点数为12的完全无向图, 耦合强度取0.95时, 其期望值获得收敛. 对于顶点数为8和13的完全无向图情形, 当耦合强度取0.75时, 所计算得到的期望值随演化时间变化收敛. 由此推测超过13个顶点的完全无向图在用量子绝热算法求解最大割问题时, 可将量子比特耦合强度归一化到0.75左右, 使期望值有效收敛.

    Abstract:

    This study analyzes the solution to the max-cut problem of different vertices according to quantum adiabatic approximation. In this algorithm, the vertices of an undirected graph are equivalent to qubits, the edge between vertices to the coupling between two qubits, and the weight value of an edge to the coupling strength. The algorithm is written in the Python programming language, and the solution to the max-cut problem of a completely undirected graph with 6–13 vertices is simulated. Experimental results demonstrate that when the completely undirected graph has 8, 12, and 13 vertices and coupling strength is 1.0, the expected value of Hamiltonian in the max-cut problem does not converge. Then the coupling strength between qubits is adjusted to observe the changes in the expected value. Experiments reveal that for a completely undirected graph with 12 vertices, the expected value converges when coupling strength is 0.95. For completely undirected graphs with 8 and 13 vertices, it converges with time when coupling strength is 0.75. Accordingly, it is inferred that the coupling strength between qubits can be normalized to about 0.75 when the quantum adiabatic algorithm is used to solve the max-cut problem for a completely undirected graph with more than 13 vertices, so that the expected value can eventually converge.

    参考文献
    相似文献
    引证文献
引用本文

高薪凯,倪明,周明,吴永政.耦合强度对量子绝热算法求解最大割的影响.计算机系统应用,2021,30(4):125-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-13
  • 最后修改日期:2020-09-03
  • 录用日期:
  • 在线发布日期: 2021-03-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号