适用于异构集群的混合并行流线生成系统
作者:
基金项目:

国家数值风洞工程基础研究(NNW2019ZT6-B19); 国家重点研发计划(2019YFB1704201)


Hybrid Parallel Streamline Generation System Suitable for Heterogeneous Clusters
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    流线是流场可视化的主要方法之一, 而针对大规模流场的流线生成由于计算量大往往需要采用高性能计算机这样的并行计算环境结合并行化算法以实现计算加速. 在当前异构计算系统越来越普遍的情况下, 为了充分利用并行异构计算环境的计算能力, 实现更高效的并行流线生成, 本文采用了基于数据并行原语结合分布式消息通讯的技术架构, 设计了一套适用于异构集群的混合并行流线生成系统, 并在此基础上针对数据分块、数据冗余化及进程通讯策略等方面进行设计, 提出并实现了一套并行粒子追踪算法. 该系统被部署于国产超算平台上, 并针对大规模CFD流场模拟结果数据可视化应用开展了实验. 本文给出了相关实验结果, 分析了核心并行算法的速度性能、可扩展性以及负载均衡等方面情况, 说明了系统及算法的有效性和可扩展性.

    Abstract:

    Streamline is one of the main methods of flow visualization. In light of a large amount of computation, the streamline generation from large flow fields usually requires parallel computing environments, such as high-performance computers and parallel algorithms, to accelerate computation. As wider application of heterogeneous computing systems, we design a hybrid parallel streamline generation system suitable for heterogeneous clusters in terms of data decomposition, overlapping and communication strategy with technologies such as data-parallel primitives and message passing interface to maximize the computing power of the heterogeneous parallel computing environment and achieve more efficient parallel streamline generation. A set of algorithms related to parallel particle advection are proposed and implemented. The system is deployed on a domestic supercomputer, and experiments are conducted to visualize the results of a large-scale CFD flow field simulation. This study provides relevant experimental results and analyzes the performance, scalability, and load balance of the core parallel algorithm, verifying the effectiveness and scalability of the system and algorithm.

    参考文献
    [1] 单桂华, 刘俊, 李观, 等. 面向大规模数据的科学可视化系统GPVis. 数据与计算发展前沿, 2019, 1(1): 46–62
    [2] Pugmire D, Childs H, Garth C, et al. Scalable computation of streamlines on very large datasets. Proceedings of Conference on High Performance Computing Networking, Storage and Analysis. Portland, OH, USA. 2009. 1–12.
    [3] Dinan J, Larkins DB, Sadayappan P, et al. Scalable work stealing. Proceedings of Conference on High Performance Computing Networking, Storage and Analysis. Portland, OH, USA. 2009. 1–11.
    [4] Müller C, Camp D, Hentschel B, et al. Distributed parallel particle advection using work requesting. Proceedings of 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV). Atlanta, GA, USA. 2013. 1–6.
    [5] Blelloch E. Vector Models for Data-parallel Computing. Cambridge: MIT Press, 1990.
    [6] Moreland K, Geveci R, Ma KL, et al. A classification of scientific visualization algorithms for massive threading. Proceedings of the 8th International Workshop on Ultrascale Visualization. Denver, CO, USA. 2013. 1–10.
    [7] Moreland K, Sewell C, Usher W, et al. VTK-m: Accelerating the visualization toolkit for massively threaded architectures. IEEE Computer Graphics and Applications, 2016, 36(3): 48–58. [doi: 10.1109/MCG.2016.48
    [8] Lo LT, Sewell C, Ahrens J. PISTON: A portable cross-platform framework for data-parallel visualization operators. The Eurographics Association. 2012. 11–20.
    [9] Moreland K, King B, Maynard R, et al. Flexible analysis software for emerging architectures. Proceedings of 2012 SC Companion: High Performance Computing, Networking Storage and Analysis. Salt Lake City, UT, USA. 2012. 821–826.
    [10] Meredith JS, Ahern S, Pugmire D, et al. EAVL: The extreme-scale analysis and visualization library. The Eurographics Association. 2012. 21–30.
    [11] Moreland K, Ayachit U, Geveci B, et al. Dax toolkit: A proposed framework for data analysis and visualization at extreme scale. Proceedings of 2011 IEEE Symposium on Large Data Analysis and Visualization. Providence, RI, USA. 2011. 97–104.
    [12] Sisneros R, Pugmire D. Tuned to terrible: A study of parallel particle advection state of the practice. Pugmire 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). Chicago, IL, USA. 2016. 1058–1067.
    [13] Peterka T, Ross R, Nouanesengsy B, et al. A study of parallel particle tracing for steady-state and time-varying flow fields. Proceedings of 2011 IEEE International Parallel & Distributed Processing Symposium. Anchorage, LA, USA. 2011. 580–591.
    [14] Zhang J, Guo HQ, Hong F, et al. Dynamic load balancing based on constrained K-D tree decomposition for parallel particle tracing. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 954–963. [doi: 10.1109/TVCG.2017.2744059
    [15] Fu YW, Yu CP, Yan Z, et al. The effects of combustion on turbulent statistics in a supersonic turbulent Jet. Advances in Applied Mathematics and Mechanics, 2019, 11(3): 664–674. [doi: 10.4208/aamm.2018.s10
    [16] Fu YW, Yu CP, Yan Z, et al. DNS analysis of the effects of combustion on turbulence in a supersonic H2/Air jet flow. Aerospace Science and Technology, 2019, 93: 105362. [doi: 10.1016/j.ast.2019.105362
    [17] Larsen M, Ahrens J, Ayachit U, et al. The ALPINE in situ infrastructure: Ascending from the ashes of strawman. Proceedings of the in Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization. Denver, CO, USA. 2017. 42–46.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘俊,高阳,单桂华,迟学斌.适用于异构集群的混合并行流线生成系统.计算机系统应用,2021,30(3):60-69

复制
分享
文章指标
  • 点击次数:914
  • 下载次数: 2514
  • HTML阅读次数: 1353
  • 引用次数: 0
历史
  • 收稿日期:2020-07-26
  • 最后修改日期:2020-08-25
  • 在线发布日期: 2021-03-06
文章二维码
您是第11121402位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号