基于多特征加权融合的静态手势识别
作者:
基金项目:

国家自然科学基金(51405448); 浙江理工大学博士科研启动项目(11122932611817); 浙江省大学生科技成果推广项目(14530031661961); 国家级大学生创新创业训练计划(201910338012); 浙江理工大学大学生科创项目(11120032662029, 11120132662028)


Static Hand Gesture Recognition Based on Multi-Feature Weighted Fusion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对人工提取特征的单一性及卷积神经网络提取特征的遗漏性问题, 提出了一种基于多特征加权融合的静态手势识别方法. 首先, 提取分割后的手势图像的傅里叶和Hu矩等形状特征, 将两者融合作为手势图像的局部特征; 设计双通道卷积神经网络提取手势图像的深层次特征, 采用主成分分析方法对提取的特征进行降维; 然后, 将提取的局部特征和深层次特征进行加权融合作为手势识别的有效特征描述; 最后, 使用Softmax分类器进行手势图像分类. 实验结果验证了提出方法的有效性, 在手势图像数据集上的识别准确率达到了99%以上.

    Abstract:

    Static hand gesture recognition based on multi-feature weighted fusion is proposed to solve the problems of singularity and omission in convolutional neural network for feature extraction. Firstly, the Fourier and Hu moments of the segmented gesture image are extracted and fused as the local features. Besides, a dual-channel convolutional neural network is designed to extract the deep features of the gesture image, which are further treated by dimensionality reduction by principal component analysis. Secondly, the extracted local and deep features are weighted and fused as effective description for hand gesture recognition. Finally, gesture images are classified with Softmax classifier. Experimental results verify the proposed method, and the recognition accuracy reaches over 99% on the image dataset.

    参考文献
    [1] Wang C, Liu Z, Chan SC. Superpixel-based hand gesture recognition with Kinect depth camera. IEEE Transactions on Multimedia, 2015, 17(1): 29–39. [doi: 10.1109/TMM.2014.2374357
    [2] Ren Z, Yuan JS, Meng JJ, et al. Robust part-based hand gesture recognition using Kinect sensor. IEEE Transactions on Multimedia, 2013, 15(5): 1110–1120. [doi: 10.1109/TMM.2013.2246148
    [3] Hikawa H, Kaida K. Novel FPGA implementation of hand sign recognition system with SOM-Hebb classifier. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(1): 153–166. [doi: 10.1109/TCSVT.2014.2335831
    [4] Neto P, Pereira D, Pires JN, et al. Real-time and continuous hand gesture spotting: An approach based on artificial neural networks. Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany. 2013. 178–183.
    [5] 田秋红, 杨慧敏, 梁庆龙, 等. 视觉动态手势识别综述. 浙江理工大学学报(自然科学版), 2020, 43(4): 557–569
    [6] Paulraj MP, Yaacob S, Bin Zanar Azalan MS, et al. A phoneme based sign language recognition system using skin color segmentation. Proceedings of 2010 6th International Colloquium on Signal Processing & its Applications. Mallaca City, Malaysia. 2010. 1–5.
    [7] Fernando M, Wijjayanayake J. Novel approach to use HU moments with image processing techniques for real time sign language communication. International Journal of Image Process, 2015, 9(6): 335–345
    [8] 李丹娇, 彭进业, 冯晓毅, 等. 结合CSS与傅里叶描述子的手势特征提取. 计算机工程, 2012, 38(6): 178–180. [doi: 10.3969/j.issn.1000-3428.2012.06.058
    [9] Pigou L, Dieleman S, Kindermans PJ, et al. Sign language recognition using convolutional neural networks. Proceedings of the European Conference on Computer Vision. Zurich, Switzerland. 2015. 572–578.
    [10] Bobić V, Tadić P, Kvaščev G. Hand gesture recognition using neural network based techniques. Proceedings of 2016 13th Symposium on Neural Networks and Applications. Belgrade, Serbia. 2016. 1–4.
    [11] Bheda V, Radpour D. Using deep convolutional networks for gesture recognition in American sign language. arXiv preprint arXiv: 1710.06836, 2017.
    [12] Rao GA, Kishore PVV, Kumar DA, et al. Neural network classifier for continuous sign language recognition with selfie video. Far East Journal of Electronics and Communications, 2017, 17(1): 49–71. [doi: 10.17654/EC017010049
    [13] Chai XJ, Liu ZP, Yin F, et al. Two streams recurrent neural networks for large-scale Continuous gesture recognition. Proceedings of the 23rd International Conference on Pattern Recognition. Cancun, Mexico. 2016. 31–36.
    [14] 包嘉欣. 基于多特征融合的静态手势识别研究[硕士学位论文]. 浙江理工大学, 2019.
    [15] 武红娇. 复杂背景下的静态手语识别技术研究[硕士学位论文]. 沈阳: 沈阳工业大学, 2017.
    [16] Rahmany I, Nemmala MEA, Khlifa N, et al. Automatic detection of intracranial aneurysm using LBP and Fourier descriptor in angiographic images. International Journal of Computer Assisted Radiology and Surgery, 2019, 14(8): 1353–1364. [doi: 10.1007/s11548-019-01996-0
    [17] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556. (2014-09-04)[2015-04-10].
    [18] Mrówczyńska M, Sztubecki J, Greinert A. Compression of results of geodetic displacement measurements using the PCA method and neural networks. Measurement, 2020, 158: 107693. [doi: 10.1016/j.measurement.2020.107693
    [19] Pansare JR, Gawande SH, Ingle M. Real-time static hand gesture recognition for American Sign Language (ASL) in complex background. Journal of Signal and Information Processing, 2012, 3(3): 364–367. [doi: 10.4236/jsip.2012.33047
    [20] 许西丹. 基于耦合深度信念网络的图像识别方法[硕士学位论文]. 西安: 陕西师范大学, 2018.
    [21] Pugeault N, Bowden R. Spelling it out: Real-time ASL fingerspelling recognition. Proceedings of 2011 IEEE International Conference on Computer Vision Workshops. Barcelona, Spain. 2011. 1114–1119.
    [22] Guo S, Huang WL, Wang LM, et al. Locally supervised deep hybrid model for scene recognition. IEEE Transactions on Image Processing, 2017, 26(2): 808–820. [doi: 10.1109/TIP.2016.2629443
    相似文献
    引证文献
引用本文

陈影柔,田秋红,杨慧敏,梁庆龙,包嘉欣.基于多特征加权融合的静态手势识别.计算机系统应用,2021,30(2):20-27

复制
分享
文章指标
  • 点击次数:1030
  • 下载次数: 2629
  • HTML阅读次数: 1694
  • 引用次数: 0
历史
  • 收稿日期:2020-05-28
  • 最后修改日期:2020-06-19
  • 在线发布日期: 2021-01-29
文章二维码
您是第11117437位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号