摘要:在临床医学领域, 图像辅助诊断对医学视图的处理效果要求很高. 针对医学图像融合过程中图像视觉效果较差的问题, 提出了一种基于稀疏理论与快速有限剪切变换的医学图像融合算法, 提高了医学图像处理效率. 首先, 采用快速有限剪切波变换(FFST)分解源图像, 将其分解为高频系数和低频系数; 其次, 根据高频系数和低频系数的不同性质, 提供不同的融合策略, 通过相对标准差比较法对高频系数进行处理, 对于稀疏性较差的低频系数利用K-SVD方法训练, 得到字典并采用稀疏原理进行处理; 最后, 将融合后的高频和低频系数通过FFST逆变换融合到医学图像中. 实验结果表明, 算法的图像融合效果好, 尤其是在提高图像清晰度等方面, 具有良好的实用价值和应用前景.