多任务学习的车辆结构化信息提取方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省教育厅一般科研项目(Y201839557)


Vehicle Structure Information Extraction Based on Multi-Task Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前, 大部分的车辆结构化信息需要通过多个步骤进行提取, 存在模型训练繁琐、各步骤模型训练数据有限和过程误差累加等问题. 为此, 采用多任务学习将车辆结构化信息提取整合在统一的神经网络之中, 通过共享特征提取结构, 减少过程误差累加, 并构建了一个多任务损失函数用于端到端训练神经网络; 针对训练样本有限的问题, 提出了新的数据整合和增广方法. 在KITTI数据集上实验结果表明, VSENet可以达到93.82%的mAP(均值平均精度), 且能达到实时的处理速度; 与多阶段的车辆结构化特征提取方法对比, 平均运行时间缩减了60%, 其精度能达到相似或者更好的效果; 实验结果表明, 该方法具有一定的先进性和有效性.

    Abstract:

    Currently, most of vehicle structured information was obtained through multiple steps, which caused the problems such as fussy training, limited training data in each step, and the accumulation of error in processing. Therefore, multi-task learning was applied to union the structured information extraction in a single neural network, and shared feature extraction structure can help to reduce the error accumulation in various processing. A loss function of multi-task learning was put forward for end-to-end network training. For solving the training data limitation problem, a new dataset augmentation and combination approach was advanced. The experimental results on the dataset KITTI show that the mAP (mean of the Average Precision) of VSENet achieves 93.82%, and the processing speed can satisfy the real-time request. Compared with multi-step vehicle structure information extraction method, the proposed approach reduces 60% of average processing time and achieves similar or better performance. These results show that the proposed method has certain advancement and is effective.

    参考文献
    相似文献
    引证文献
引用本文

朱红,岑跃峰,王思泰.多任务学习的车辆结构化信息提取方法.计算机系统应用,2020,29(12):93-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-20
  • 最后修改日期:2020-05-15
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号