基于网格LSTM混合算法的地质领域用户意图识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFC1505501);国土资源部大数据科研专项(201511079-3)


User Intention Recognition in Geological Field Based on LSTM-CC Hybrid Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统基于模板匹配、关键词共现、人工特征集合等方法的问答机器人存在用户意图识别耗时、费力且扩展性不强的问题,本文结合地质领域文献中结构化知识问答的复杂特点,使用了基于网格记忆网络(LSTM+CRF+Lattice)与基于卷积神经网络(CNN)融合的优化模型.该模型将用户询问意图识别看作分类问题,首先使用网格记忆网络进行文本信息的命名实体识别及关系抽取,然后使用卷积神经网络将用户输入的其他文本信息进行属性分类,接着将分类结果转化为满足知识图谱查询的结构化方式,最终实现地质知识属性映射的用户询问意图识别.实验证明,在考虑地质知识特征的处理中,对于准确率的提升起到了极大帮助.

    Abstract:

    Aiming at the time-consuming, laborious, and weak expansibility of user intention recognition in question answering robots based on template matching, keyword co-occurrence or artificial feature set, this study proposes a model based on the combination of grid memory network (LSTM+CRF+Lattice) and Convolutional Neural Network (CNN) combined with the characteristics of geological literature question answering. In this hybrid model, users’ query intention recognition is regarded as a classification problem. Firstly, the grid memory network is used to identify the named entity and extract the relationship of the text information, then the CNN is used to classify the attributes of other text information input by users, and then the classification results are transformed into a structured way to meet the query of knowledge graph, and finally realizes the attribute mapping of user intention recognition. Experiments show that it is very helpful to improve the accuracy rate when considering the characteristics of geological knowledge.

    参考文献
    相似文献
    引证文献
引用本文

贺金龙,付立军,姚郑,吕鹏飞,黄徐胜.基于网格LSTM混合算法的地质领域用户意图识别.计算机系统应用,2020,29(10):44-52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-25
  • 最后修改日期:2020-04-21
  • 录用日期:
  • 在线发布日期: 2020-09-30
  • 出版日期: 2020-10-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号