卷积神经网络的聚焦均方损失函数设计
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2017YFC0803702)


Focused Mean Square Loss Function Design in Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高卷积神经网络在人体姿势估计任务上的精度,提出了一种基于均方损失函数(Mean Squared Error,MSE)的改进损失函数来处理网络学习中回归热点图的前景(高斯核)和背景之间像素点不均衡问题,根据前景与背景不同像素点值对损失函数赋予不同权重,并将其命名为聚焦均方损失函数(Focus Mean Squared Error,FMSE).与均方损失函数相比,我们提出的聚焦均方损失函数可以有效地减少前景和背景之间像素点不均衡对网络性能的影响,帮助网络定位关键点的空间位置,提升了网络性能,并使得训练阶段中损失函数收敛速度更快.并在公开数据集上进行实验,以验证我们所提出的聚焦均方损失函数的有效性.

    Abstract:

    In order to improve the accuracy of the human pose estimation task of convolutional neural networks, we propose an improved loss function based on Mean Squared Error (MSE) to deal with the pixel imbalance between foreground (Gaussian kernel) and background in heatmaps, assign different weights to the loss function according to different pixel values in the foreground and background, and named it Focus Mean Squared Error (FMSE). Compared with the mean squared loss function, the proposed focused mean squared loss function can effectively reduce the impact of pixel imbalance between foreground and background on network performance, help the network locate the spatial location of key points, improve network performance, and make the loss function converge faster in the training phase. Experiments are performed on public data sets to verify the effectiveness of the proposed focused mean square loss function.

    参考文献
    相似文献
    引证文献
引用本文

徐锐,冯瑞.卷积神经网络的聚焦均方损失函数设计.计算机系统应用,2020,29(10):133-140

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-25
  • 最后修改日期:2020-04-21
  • 录用日期:
  • 在线发布日期: 2020-09-30
  • 出版日期: 2020-10-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号