基于改进人工蜂群算法的配电网重构方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点计划研发计划(2016YFB0901100)


Reconstruction Method of Distribution Network Based on Improved Artificial Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高配电网运行的经济性和供电的可靠性,本文选取系统平均停电频率和系统平均停电持续时间两个指标来表征配电网的供电可靠性,并同时考虑有功网损的因素,建立了计及供电可靠性指标的配电网多目标重构模型.本文将量子理论和Metropolis准则引入到人工蜂群算法中,并通过模糊满意度决策方法来确定多目标重构模型的最优解,提出了基于改进人工蜂群算法的配电网多目标重构模型优化方法.建立配电网重构实例仿真系统,通过与其它智能方法的重构对比分析证明了本文重构模型及求解方法的可行性和优越性.

    Abstract:

    In order to improve the economy of distribution network operation and the reliability of power supply, the system average outage frequency and the system average outage duration are selected to represent the power supply reliability of the distribution network in this study, and the active power loss factor is considered at the same time, a multi-objective reconstruction model of distribution network is established, which takes the power supply reliability index into account. This study introduces quantum theory and Metropolis criterion into artificial swarm algorithm, and the optimal solution of multi-objective reconstruction model is determined by fuzzy satisfaction decision method, a multi-objective reconstruction model optimization method for distribution network based on improved artificial swarm algorithm is proposed. The distribution network reconstruction example simulation system established, and the feasibility and superiority of the reconstruction model and solution method are verified by comparison with other intelligent methods.

    参考文献
    相似文献
    引证文献
引用本文

赵永生,赵爱华.基于改进人工蜂群算法的配电网重构方法.计算机系统应用,2020,29(10):211-216

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-06
  • 最后修改日期:2020-04-10
  • 录用日期:
  • 在线发布日期: 2020-09-30
  • 出版日期: 2020-10-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号