基于气象因素充分挖掘的BiLSTM光伏发电短期功率预测
作者:
基金项目:

长安大学研究生科研创新实践项目(300103703041)


BiLSTM Short-Term Forecasting Method for Photovoltaic Power Generation Based on Fully Exploiting Meteorological Factors
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统光伏发电功率预测存在因气象因素特征提取不综合不精确而导致预测精度不高的问题. 为了充分挖掘气象因素对光伏出力的影响, 并有效利用深度学习技术在非线性拟合方面的优势, 本文提出了一种基于气象因素充分挖掘的双向长短期记忆(Bi-directional Long Short Term Memory, BiLSTM)网络光伏发电短期功率预测方法. 在对原始数据进行异常值及标准化处理的基础上, 采用K近邻算法(K-Nearest Neighbor, KNN)在外界温度、湿度、压强等诸多气象因素中充分挖掘影响光伏出力的关键因素, 重构多元数据序列, 并在探索输入层时间步长、模型层数及每层维数等超参数的合理设置方案的基础上, 构建BiLSTM网络模型, 实现光伏发电短期功率的高精度预测. 仿真结果表明, 与KNN、深度信念网络(DBN)、BiLSTM、PCA-LSTM等经典方法比较, 所提KNN-BiLSTM方法具有更高的预测精度.

    Abstract:

    The traditional PV power generation prediction has the problem that the prediction accuracy is not high due to incomplete and inaccurate feature extraction of meteorological factors. In order to fully explore the influence of meteorological factors on PV output and effectively utilize the advantage of deep learning technology in non-linear fitting, this study proposes a short-term forecasting method for PV power that is based on the full mining of meteorological factors and is realized through the BiLSTM network. Based on outliers and standardized processing of the original data, KNN is used to fully explore the key factors affecting PV output among meteorological factors such as external temperature, humidity, and pressure. And then multivariate data sequences are reconstructed. On the basis of exploring the reasonable setting scheme of the hyper parameters such as the time steps of the input layer, the number of model layers, and the dimensions of each layer, a BiLSTM network model is built to realize the high-precision prediction of short-term power of PV power generation. Simulation results show that the proposed KNN-BiLSTM method has higher prediction accuracy than the classical methods such as KNN, DBN, BiLSTM, and PCA-LSTM.

    参考文献
    [1] Zhang JL, Tan ZF, Wei YM. An adaptive hybrid model for day-ahead photovoltaic output power prediction. Journal of Cleaner Production, 2020, 244: 118858. [doi: 10.1016/j.jclepro.2019.118858
    [2] 赛迪智库光伏产业形势分析课题组.2019年中国光伏产业发展形势展望.电器工业, 2019, 5: 51-55.
    [3] Liu J, Fang WL, Zhang XD, et al. An improved photovoltaic power forecasting model with the assistance of aerosol index data. IEEE Transactions on Sustainable Energy, 2015, 6(2): 434-442. [doi: 10.1109/TSTE.2014.2381224
    [4] Zhou ZY, Xiong F, Huang BY, et al. Game-theoretical energy management for energy internet with big data-based renewable power forecasting. IEEE Access, 2017, 5: 5731-5746. [doi: 10.1109/ACCESS.2017.2658952
    [5] 张一平, 宋红, 罗敏, 等. 人工神经网络算法在光伏发电短期功率预测中的应用. 太阳能, 2019, (4): 47-53. [doi: 10.3969/j.issn.1003-0417.2019.04.012
    [6] Tang YC, Zhao SD, Ten CW, et al. Enhancement of distribution load modeling using statistical hybrid regression. Proceedings of 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference. Washington, WA, USA. 2017. 1-5.
    [7] Yang XY, Jiang FF, Liu H. Short-term solar radiation prediction based on SVM with similar data. Proceedings of the 2nd IET Renewable Power Generation Conference. Beijing, China. 2013. 1-4.
    [8] Khan I, Zhu HL, Yao JX, et al. Hybrid power forecasting model for photovoltaic plants based on neural network with air quality index. International Journal of Photoenergy, 2017, 2017: 6938713
    [9] Qing XY, Niu YG. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy, 2018, 148: 461-468. [doi: 10.1016/j.energy.2018.01.177
    [10] Neo YQ, Teo TT, Woo WL, et al. Forecasting of photovoltaic power using deep belief network. Proceedings of IEEE Region 10 Conference. Malaysia. 2017. 1189-1194.
    [11] Zhang JX, Chi YY, Xiao LP. Solar power generation forecast based on LSTM. Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science. Beijing, China. 2018. 869-872.
    [12] Chen K, Huo Q. Training deep bidirectional LSTM acoustic model for LVCSR by a context-sensitive-chunk BPTT approach. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(7): 1185-1193. [doi: 10.1109/TASLP.2016.2539499
    [13] Fazle K, Majumdar S, Darabi H, et al. LSTM fully convolutional networks for time series classification. IEEE Access, 2017, 6: 1662-1669
    [14] Antonanzas J, Osorio N, Escobar R, et al. Review of photovoltaic power forecasting. Solar Energy, 2016, 136: 78-111. [doi: 10.1016/j.solener.2016.06.069
    [15] Yesilbudak M, Sagiroglu S, Colak I. A novel implementation of kNN classifier based on multi-tupled meteorological input data for wind power prediction. Energy Conversion and Management, 2017, 135: 434-444. [doi: 10.1016/j.enconman.2016.12.094
    [16] 王志远, 王守相, 陈海文, 等. 考虑空间相关性采用LSTM神经网络的光伏出力短期预测方法. 电力系统及其自动化学报, 2020, 32(5): 78-85.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐先峰,刘阿慧,陈雨露,蔡路路.基于气象因素充分挖掘的BiLSTM光伏发电短期功率预测.计算机系统应用,2020,29(7):205-211

复制
分享
文章指标
  • 点击次数:1618
  • 下载次数: 4087
  • HTML阅读次数: 2832
  • 引用次数: 0
历史
  • 收稿日期:2019-12-24
  • 最后修改日期:2020-01-20
  • 在线发布日期: 2020-07-04
  • 出版日期: 2020-07-15
文章二维码
您是第12828424位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号