文本检测与识别在细粒度图片分类中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Application of Text Detection and Recognition in Fine-Grained Image Classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    细粒度的图片分类是深度学习图片分类领域中的一个重要分支,其分类任务比一般的图片分类要困难,因为很多不同分类图片中的特征相似度极高,没有特别鲜明的特征用以区分,因而需要优化一个传统的图片分类方法.在一般的图片分类中,通常通过提取视觉以及像素级别的特征用来训练,然而直接应用到细粒度分类上并不太适配,效果仍有待提高,可考虑利用非像素级别的特征来加以区分.因此,我们提出联合文本信息和视觉信息作用于图片分类中,充分利用图片上的特征,将文本检测与识别算法和通用的图片分类方法结合,应用于细粒度图片分类中,在Con-text数据集上的实验结果表明我们提出的算法得到的准确率有显著的提升.

    Abstract:

    Fine-grained image classification is an important branch in the field of deep learning image classification. Since many different classified images are very similar in their features, and there is no particularly distinctive feature can be used to distinguish among them, it makes the classification task of fine-grained image more difficult than that of the general image. Therefore, a traditional image classification method needs to be optimized. Usually, visual and pixel-level features extraction is used in the training of the general image classification. However, direct application of this method to the fine-grained classification is not very suitable, and the effect still needs to be improved, while non-pixel-level features can be used to distinguish. Hence, we propose to combine text and visual information in the image classification, make full use of the features on the images, combine the text detection and recognition algorithms with general image classification methods, and apply it to the fine-grained image classification. In Con-text dataset, the experimental result shows that the accuracy obtained by the proposed algorithm has been significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

姜倩,刘曼.文本检测与识别在细粒度图片分类中的应用.计算机系统应用,2020,29(10):248-254

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-12-17
  • 最后修改日期:2020-01-14
  • 录用日期:
  • 在线发布日期: 2020-09-30
  • 出版日期: 2020-10-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号