基于可变形卷积的手绘图像检索
作者:
基金项目:

中央高校基本科研业务费专项资金(18CX06048A)


Sketch-Based Image Retrieval with Deformable Convolution
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    手绘图像仅包含简单线条轮廓, 与色彩、细节信息丰富的自然图像有着截然不同的特点. 然而目前的神经网络大多针对自然图像设计, 不能适应手绘图像稀疏性的特性. 针对此问题, 本文提出一种基于可变形卷积的手绘检索方法. 首先通过Berkerly边缘检测算法将自然图转化为边缘图, 消除域差异. 然后将卷积神经网络中的部分标准卷积替换为可变形卷积, 使网络能够充分关注手绘图轮廓信息. 最后分别将手绘图与边缘图输入网络并提取全连接层特征作为特征描述子进行检索. 在基准数据集Flickr15k上的实验结果表明, 本文方法与现有方法相比能够有效提高手绘图像检索精度.

    Abstract:

    Sketches contain only simple lines and contours, which have completely different characteristics from natural images with rich colors and details. However, the current neural networks are mostly designed for natural images and cannot adapt to the sparseness of sketches. Aiming at this problem, this study proposes a sketch-based image retrieval method based on deformable convolution. First, the Berkeley edge detection algorithm is used to transform the natural image into edge map to eliminate domain differences. Then replace part of the standard convolution in the convolutional neural networks with deformable convolution, so that the network can fully focus on the outlines of the sketches. Finally, sketches and edge maps are sent to the network separately, and extract the fully connected layer features as feature descriptors for retrieval. Experimental results on the benchmark dataset Flickr15k show that the proposed method can effectively improve the accuracy of sketch-based image retrieval compared with existing methods.

    参考文献
    [1] Hu R, Collomosse J. A performance evaluation of gradient field hog descriptor for sketch based image retrieval. Computer Vision and Image Understanding, 2013, 117(7): 790-806. [doi: 10.1016/j.cviu.2013.02.005
    [2] Saavedra JM, Bustos B. An improved histogram of edge local orientations for sketch-based image retrieval. Proceedings of the 32nd DAGM Symposium Joint Pattern Recognition Symposium. Darmstadt, Germany. 2010. 432-441.
    [3] Saavedra JM. RST-SHELO: Sketch-based image retrieval using sketch tokens and square root normalization. Multimedia Tools and Applications, 2017, 76(1): 931-951. [doi: 10.1007/s11042-015-3076-5
    [4] Yu Q, Yang YX, Song YZ, et al. Sketch-a-net that beats humans.Proceedings of the British Machine Vision Conference. 2015. 7-10.
    [5] Bhattacharjee SD, Yuan JS, Hong WX, et al. Query adaptive instance search using object sketches. Proceedings of the 24th ACM international conference on Multimedia. Amsterdam, the Netherlands. 2016. 1306-1315.
    [6] Qi YG, Song YZ, Zhang HG, et al. Sketch-based image retrieval via siamese convolutional neural network. Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix, AZ, USA. 2016. 2460-2464.
    [7] Bui T, Ribeiro L, Ponti M, et al. Sketching out the details: Sketch-based image retrieval using convolutional neural networks with multi-stage regression. Computers & Graphics, 2018, 71: 77-87
    [8] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, CA, USA. 2012. 1097-1105.
    [9] Szegedy C, Liu W, Jia YQ, et al. Going deeper with convolutions. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 1-9.
    [10] Huang F, Jin C, Zhang YJ, et al. Sketch-based image retrieval with deep visual semantic descriptor. Pattern Recognition, 2018, 76: 537-548. [doi: 10.1016/j.patcog.2017.11.032
    [11] Seddati O, Dupont S, Mahmoudi S. Quadruplet networks for sketch-based image retrieval. Proceedings of 2017 ACM on International Conference on Multimedia Retrieval. Bucharest, Romania. 2017. 184-191.
    [12] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    [13] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations. 2015. 1-14.
    [14] Arbeláez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916. [doi: 10.1109/TPAMI.2010.161
    [15] Dai JF, Qi HZ, Xiong YW, et al. Deformable convolutional networks. Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy. 2017. 764-773.
    [16] Dalal N, Triggs B. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA. 2005. 886-893.
    [17] Qi YG, Song YZ, Xiang T, et al. Making better use of edges via perceptual grouping. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 1856-1865.
    [18] Wang F, Kang L, Li Y. Sketch-based 3d shape retrieval using convolutional neural networks. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 1875-1883.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王文超.基于可变形卷积的手绘图像检索.计算机系统应用,2020,29(7):239-244

复制
分享
文章指标
  • 点击次数:1451
  • 下载次数: 2294
  • HTML阅读次数: 1563
  • 引用次数: 0
历史
  • 收稿日期:2019-12-16
  • 最后修改日期:2020-01-07
  • 在线发布日期: 2020-07-04
  • 出版日期: 2020-07-15
文章二维码
您是第12821910位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号