基于虚拟机动态迁移的负载均衡策略
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省科技厅(重大)项目(2015C03001)


Load Balancing Strategy Based on Dynamic Migration of Virtual Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对数据中心由于异构节点资源利用率不均衡导致的负载均衡问题,本文提出了一种基于动态阈值的迁移时机判决算法与基于负载类型感知的选择算法相结合的虚拟机动态迁移选择策略.该策略先通过监控全局负载度与高低负载节点占比动态调整状态阈值,并结合负载评估值判断迁移时机;再分析虚拟机负载类型,依据虚拟机与节点资源的依赖度、虚拟机当前内存带宽比和虚拟机贡献度选择待迁移虚拟机,并根据虚拟机与目的节点的资源匹配度与迁移代价选择目的节点,实现对高负载与低负载节点的虚拟机动态调整,从而优化节点资源配置问题.实验结果表明,该策略可以有效减少虚拟机迁移次数并保证数据中心服务质量,最终改善数据中心的负载均衡能力.

    Abstract:

    Aiming at the load balancing problem caused by the imbalance of resource utilization of heterogeneous nodes in data center, this study proposes a virtual machine dynamic migration selection strategy based on dynamic threshold-based migration timing decision algorithm and load type perception-based selection algorithm. This strategy first dynamically adjusts the state threshold by monitoring the global load and the proportion of the high and low load nodes, and combines this threshold and load evaluation value to determine the migration timing. Then this strategy analyzes the virtual machine load type, selects the VM to be migrated based on the dependency of the virtual machine and the node resources, the current memory bandwidth ratio of the virtual machine, and the contribution of the virtual machine, and selects the destination node according to the resource matching degree and the migration cost of the virtual machine and the destination node. Thereby this strategy implements dynamic adjustment of virtual machines for high-load and low-load nodes to optimize node resource allocation. The experimental results show that this strategy can effectively reduce the number of virtual machine migrations and ensure the quality of data center services, and ultimately improve the load balancing ability of the data center.

    参考文献
    相似文献
    引证文献
引用本文

王晶,何利力.基于虚拟机动态迁移的负载均衡策略.计算机系统应用,2020,29(5):167-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-09
  • 最后修改日期:2019-11-04
  • 录用日期:
  • 在线发布日期: 2020-05-07
  • 出版日期: 2020-05-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号