基于便携式脑电设备的快乐和悲伤情绪分类
作者:

Classification of Happiness and Sadness Based on Portable EEG Devices
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    驾驶员情绪状态的识别对车辆主动安全技术的研究具有重要的应用价值.本研究通过情绪视频诱发的方法采集17位被试前额双通道脑电信号,提取不同情绪的脑电特征,并对数据进行降维处理后采用多种分类器进行情绪分类.结果显示,与单核分类器和集成学习分类器相比,基于梯度提升决策树(GBDT)算法得到快乐和悲伤的识别准确率最高.本研究为驾驶员情绪状态的实时监测和识别提供新方法,为提高行车的安全性提供了理论保障.

    Abstract:

    There is an important application value for the research of vehicle active safety technology through the recognition of drivers’ emotional state. In this study, seventeen subjects’ frontal dual-channel EEG signals were collected by emotional video induction method, and EEG characteristics of different emotions were extracted. After dimensionality reduction, the data were classified by multiple classifiers. The results show that compared with single-core classifier and ensemble learning classifier, Gradient Boosting Decision Tree (GBDT) algorithm has the highest recognition accuracy of happiness and sadness. This study provides a new method for real-time monitoring and recognition of drivers’ emotional state, and provides a theoretical guarantee for improving driving safety.

    参考文献
    [1] Megías A, Maldonado A, Cándido A, et al. Emotional modulation of urgent and evaluative behaviors in risky driving scenarios. Accident Analysis & Prevention, 2011, 43(3):813-817
    [2] NHTSA. Traffic safety facts 2007:A compilation of motor vehicle crash data from the fatality analysis reporting system and the general estimates system. Washington DC:National Highway Traffic Safety Administration, 2007.
    [3] Lin YP, Wang CH, Wu TL, et al. EEG-based emotion recognition in music listening:A comparison of schemes for multiclass support vector machine. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, China. 2009. 489-492.
    [4] Schaaff K. EEG-based emotion recognition. Diplomarbeit am institut fur algorithmen und kognitive systeme[Thesis]. Karlsruhe:Universitat Karlsruhe, 2008.
    [5] Li M, Lu BL. Emotion classification based on gamma-band EEG. Proceedings of 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, MN, USA. 2009. 1323-1326.
    [6] Liu YS, Sourina O, Hafiyyandi MR. EEG-based emotion-adaptive advertising. Proceedings of 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. Geneva, Switzerland. 2013. 843-848.
    [7] Ishino K, Hagiwara M. A feeling estimation system using a simple electroencephalograph. Proceedings of 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-system Security and Assurance. Washington, DC, USA. 2003. 4204-4209.
    [8] Schaaff K, Schultz T. Towards an EEG-based emotion recognizer for humanoid robots. Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive Communication. Toyama, Japan. 2009. 792-796.
    [9] 冯正直, 张大均. 中国版SCL-90的效度研究. 第三军医大学学报, 2001, 23(4):481-483.[doi:10.3321/j.issn:1000-5404.2001.04.038
    [10] 郑晓华, 李延知. 状态-特质焦虑问卷. 中国心理卫生杂志, 1997, 11(4):219-220.[doi:10.3321/j.issn:1000-6729.1997.04.009
    [11] 张明园. 精神科评定量表手册. 2版. 长沙:湖南科学技术出版社, 1998.
    [12] 徐鹏飞, 黄宇霞, 罗跃嘉. 中国情绪影像材料库的初步编制和评定. 中国心理卫生杂志, 2010, 24(7):551-554, 561.[doi:10.3969/j.issn.1000-6729.2010.07.017
    [13] Valenzi S, Islam T, Juric P, et al. Individual classification of emotions using EEG. Journal of Biomedical Science and Engineering, 2014, 7(8):604-620.[doi:10.4236/jbise.2014.78061
    [14] 王一牛, 周立明, 罗跃嘉. 汉语情感词系统的初步编制及评定. 中国心理卫生杂志, 2008, 22(8):608-612.[doi:10.3321/j.issn:1000-6729.2008.08.014
    [15] Schaefer A, Nils F, Sanchez X, et al. Assessing the effectiveness of a large database of emotion-eliciting films:A new tool for emotion researchers. Cognition & Emotion, 2010, 24(7):1153-1172
    [16] Gross JJ, Levenson RW. Emotion elicitation using films. Cognition and Emotion, 1995, 9(1):87-108.[doi:10.1080/02699939508408966
    [17] 林凤涛, 陈明奎. 二阶统计量的盲源分离研究. 噪声与振动控制, 2008, 28(2):7-9, 14.[doi:10.3969/j.issn.1006-1355.2008.02.003
    [18] Katz MJ. Fractals and the analysis of waveforms. Computers in Biology and Medicine, 1988, 18(3):145-156.[doi:10.1016/0010-4825(88)90041-8
    [19] Coan JA, Allen JJB. Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 2004, 67(1-2):7-50.[doi:10.1016/j.biopsycho.2004.03.002
    [20] 任亚莉. 基于脑电的脑-机接口系统. 中国组织工程研究与临床康复, 2011, 15(4):749-752
    [21] 刘爽, 仝晶晶, 杨佳佳, 等. 基于脑电同源样本捆绑法的情绪识别研究. 中国生物医学工程学报, 2016, 35(3):272-277.[doi:10.3969/j.issn.0258-8021.2016.03.003
    [22] 李昕, 蔡二娟, 田彦秀, 等. 一种改进脑电特征提取算法及其在情感识别中的应用. 生物医学工程学杂志, 2017, 34(4):510-517, 528
    [23] 钟铭恩, 吴平东, 彭军强, 等. 基于脑电信号的驾驶员情绪状态识别研究. 中国安全科学学报, 2011, 21(9):64-69.[doi:10.3969/j.issn.1003-3033.2011.09.011
    [24] Nie D, Wang XW, Shi LC, et al. EEG-based emotion recognition during watching movies. Proceedings of 2011 5th International IEEE/EMBS Conference on Neural Engineering. Cancun, Mexico. 2011. 667-670.
    [25] Zheng WL, Zhu JY, Peng Y, et al. EEG-based emotion classification using deep belief networks. Proceedings of 2014 IEEE International Conference on Multimedia and Expo. Chengdu, China. 2014. 1-6.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚娟娟,路堃,许金秀.基于便携式脑电设备的快乐和悲伤情绪分类.计算机系统应用,2020,29(5):233-238

复制
分享
文章指标
  • 点击次数:2256
  • 下载次数: 2366
  • HTML阅读次数: 2220
  • 引用次数: 0
历史
  • 收稿日期:2019-09-04
  • 最后修改日期:2019-10-08
  • 在线发布日期: 2020-05-07
  • 出版日期: 2020-05-15
文章二维码
您是第12828882位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号