基于UKF的环境自适应UWB/DR室内定位方法
作者:

Adaptive UWB/DR Indoor Co-Localization Approach Based on UKF
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对复杂室内环境下超宽带(Ultra WideBand,UWB)信号传播的非视距(Non Line Of Sight,NLOS)误差问题,本文提出了一种基于无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的环境自适应UWB/DR室内定位方法.该方法通过建立自适应UKF滤波模型,将UWB定位信息和航迹推算(Dead Reckoning,DR)定位信息进行融合.依据新息和高斯分布的3σ原则来对UWB定位结果进行非视距检测,再通过新息的实时估计协方差和理论协方差来构建环境适应系数,进而用此系数动态修正UWB定位的观测噪声,使得观测噪声自适应真实环境,降低NLOS误差对融合定位结果的影响.实验结果表明,该方法能有效减小UWB定位的NLOS误差,并且由于环境适应系数的创新引入,比UKF定位和粒子滤波定位(Particle Filtering,PF)有更高的定位精度和更强的抗NLOS误差性能.

    Abstract:

    In view of the Non-Line-Of-Sight (NLOS) error of Ultra-WideBand (UWB) signal propagation in complex indoor environments, an adaptive UWB/DR co-localization approach based on Unscented Kalman Filter (UKF) is proposed. It combines the positioning information of UWB and Dead Reckoning (DR) by establishing an adaptive UKF filtering model. In this process, the principle of innovation and Gaussian distribution is used to detect whether the UWB positioning result contains NLOS error, and then the environmental adaptation coefficient, which is constructed by real-time estimation covariance and theoretical covariance of the innovation, dynamically correct the observed noise of UWB and make it adaptive to the real environment to reduce the impact of NLOS error on the positioning result to a greater extent. The experimental results show that the proposed approach can effectively reduce the NLOS error of UWB positioning, and because of the innovative introduction of environmental adaptation coefficient, it has higher positioning accuracy and stronger anti-NLOS error performance than UKF positioning and Particle Filtering (PF) positioning.

    参考文献
    [1] 吕源, 李军. 室内环境下定位技术的研究. 电子测试, 2008, (4):19-22.[doi:10.3969/j.issn.1000-8519.2008.04.006
    [2] 李大川. 室内外协同定位导航关键技术研究[硕士学位论文]. 成都:电子科技大学, 2016.
    [3] 周牧, 耿小龙, 谢良波, 等. 室内Wi-Fi/PDR自适应鲁棒卡尔曼滤波融合定位方法. 电子学报, 2019, 47(1):9-15.[doi:10.3969/j.issn.0372-2112.2019.01.002
    [4] Kok M, Hol JD, Schön TB. Indoor positioning using ultrawideband and inertial measurements. IEEE Transactions on Vehicular Technology, 2015, 64(4):1293-1303.[doi:10.1109/TVT.2015.2396640
    [5] Li SX, Li GY, Wang L, et al. A three-dimensional robust ridge estimation positioning method for UWB in a complex environment. Advances in Space Research, 2017, 60(12):2763-2775.[doi:10.1016/j.asr.2017.10.040
    [6] Luo YJ, Law CL. Indoor positioning using UWB-IR signals in the presence of dense multipath with path overlapping. IEEE Transactions on Wireless Communications, 2012, 11(10):3734-3743.[doi:10.1109/TWC.2012.081612.120045>
    [7] 何贵斌. 超宽带导航技术及应用构想. 中国新通信, 2012, (8):43-48
    [8] 张令文, 杨刚. 超宽带室内定位关键技术. 数据采集与处理, 2013, 28(6):706-713.[doi:10.3969/j.issn.1004-9037.2013.06.002
    [9] Liu BB, Wu XJ, Reddy V, et al. A RTLS/DR based localization system architecture for indoor mobile robots. Proceedings of 2010 IEEE International Symposium on A World of Wireless, Mobile and Multimedia Networks. Montrreal, QB, Canada. 2010. 1-6.
    [10] 马勤勇. 两轮差速驱动移动机器人运动模型研究[硕士学位论文]. 重庆:重庆大学, 2013.
    [11] Julier SJ, Uhlmann JK, Durrant-Whyte HF. A new approach for filtering nonlinear systems. Proceedings of 1995 American Control Conference-ACC'95. Seattle, WA, USA. 1995. 1628-1632.
    [12] 王芳, 李楠, 刘汝佳, 等. 基于超宽带和航位推算的室内机器人UKF定位算法. 导航定位与授时, 2017, 4(2):26-30
    [13] 郝晨, 李航. 扩展卡尔曼和无迹卡尔曼滤波应用对比研究. 沈阳师范大学学报(自然科学版), 2015, 33(2):279-283
    [14] 战帅, 冯世民. 扩展卡尔曼滤波器和无迹卡尔曼滤波器的性能对比研究. 信息通信, 2018, (5):35-36.[doi:10.3969/j.issn.1673-1131.2018.05.016
    [15] Mehra R. Approaches to adaptive filtering. IEEE Transactions on Automatic Control, 1972, 17(5):693-698.[doi:10.1109/TAC.1972.1100100
    [16] 卞鸿巍, 金志华, 王俊璞, 等. 组合导航系统新息自适应卡尔曼滤波算法. 上海交通大学学报, 2006, 40(6):1000-1003, 1009.[doi:10.3321/j.issn:1006-2467.2006.06.028
    引证文献
引用本文

周琳,李晓明,江先志.基于UKF的环境自适应UWB/DR室内定位方法.计算机系统应用,2020,29(5):175-181

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-20
  • 最后修改日期:2019-10-15
  • 在线发布日期: 2020-05-07
  • 出版日期: 2020-05-15
文章二维码
您是第12829690位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号